B1: Tim cac chu so a, b sao cho a56b chia het cho 45.
B2: Phan tich da thuc thanh nhan tu: x3 + 4x2 - 29x + 24
1) Tim chu so a, b sao a56b chia het cho 45.
2) Phan tich da thuc sau thanh nhan tu: x3 + 4x2 - 29x + 24
2) ta có \(x^3+4x^2-29x+24=x^3+8x^2-4x^2-32x+3x+24\)
\(=x^2\left(x+8\right)-4x\left(x+8\right)+3\left(x+8\right)=\left(x+8\right)\left(x^2-4x+3\right)\)
\(=\left(x+8\right)\left(x^2-x-3x+3\right)=\left(x-8\right)\left[x\left(x-1\right)-3\left(x-1\right)\right]=\left(x+8\right)\left(x-1\right)\left(x-3\right)\)
tim cac chu so ab sao cho a56b chia het cho 45
a56b chia het cho 45=>a56b chia het cho ca 5 va 9
a56b chia het cho 5 ->b thuoc 0;5
a56b chia het cho 9.TH1:neu b=0->a+5+6+0 chia het cho 9
->a+11 chia het cho 9(1)
ma a la chu so(2)
tu(1) va(2)->a=7
TH2:neu b=5->a+5+6+5 chia het cho 9
->a+16 chia het cho9(3)
ma a la chu so(4)
tu(3) va (4)->a=2
thoi ban tu vay nhe!
cho da thuc f( x) = x4+ 2x3 -x - 2
a, phan tich f(x) thanh nhan tu
b, chung minh f(x) chia het cho 6 voi moi x la so nguyen
a)\(f\left(x\right)=x^4+2x^3-x-2\)
\(=x^4+2x^3+x^2-x^2-x-2\)
\(=\left(x^2+x\right)^2-\left(x^2+x\right)-2\)
Đặt \(x^2+x=t\) ta có:
\(=t^2-t-2\)\(=\left(t-2\right)\left(t+1\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+1\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+1\right)\)
cau 1 :phan tich da thuc thanh nhan tu a)5x3y-10x2y2+5xy3 b)x3 2y-1-125 2y-1 c)x2-6x-4y2+9 d)x2-xy+2y-2x e)4x2-4y2+4x+1 minh can gap
phan tich cac da thuc sau thanh nhan tu:
(x+1).(x+2).(x+3).(x+4)-24
Bạn Sonic đã giải hết rồi^^
Giờ mình chỉ cho bạn 1 phương pháp nhỏ thôi nhé, để sau này bài phân tích đa thức thành nhân tử nào cũng làm được hết. Đó là phương pháp nhẩm nghiệm. Vì đầu năm lớp 8 chắc chỉ cho đa thức nghiệm nguyên thôi nên xài cái này là khỏe, bậc mấy cũng làm được hết.
PP này như sau:
Bạn cần biết Định lý: 1 đa thức nếu có nghiệm nguyên thì nghiệm đó sẽ là ước của hệ số tự do.
VD:
2) x^3-7x-6. Đầu tiên ta xét các nghiệm của 6 là 1;-1;2;-2;3;-3;6;-6 xem ước nào là nghiệm.
Ta có: x = 1 => x^3 - 7x - 6 = 1^3 - 7.1 + 6 = 1 - 7 + 6 = 0 => 1 là nghiệm đa thức.
=> Đa thức có nhân tử x - 1.
Bạn có thể xét tiếp sẽ thấy các nghiệm khác, nhưng ta chỉ cần 1 nghiệm là đủ rồi.
Bạn xét x^3 - 7x - 6. Ta phải phân tích đa thức này ra dạng (x - 1)(x^2 + ax + b) (do đây là đa thức bậc 3)
Đầu tiên xét x^3. Để rút x - 1 ra thì ở ngoài ngoặc phải có x^2. Vậy ta cứ ghi:
x^3 - 7x - 6
=
= x^2 (x - 1)
Sau đó bạn nhân ngược lên và viết kết quả ở dòng 2
Ta có:x^3 - 7x - 6
= x^3 - x^2
= x^2 (x - 1)
Tiếp theo xét -x^2. Đề không có -x^2 nên phải + x^2 vào để mất đi.
x^3 - 7x - 6
= x^3 - x^2 + x^2
= x^2 ( x - 1)
Tiếp theo xét x^2. Để có nhân tử x - 1 phải rút x ra ngoài. Ta ghi:
x^3 - 7x - 6
= x^3 - x^2 + x^2
= x^3 (x - 1) + x^2 (x - 1)
Sau đó bạn nhân lên và ghi lại ở dòng 2:
x^3 - 7x - 6
= x^3 - x^2 + x^2 - x
= x^3 (x - 1) + x^2 (x - 1)
Tiếp theo xét -x. Đề bài là -7x vậy phải thêm -6x vào. Tới đây bạn ghi cả hệ số tự do:
x^3 - 7x - 6
= x^3 - x^2 + x^2 - x - 6x + 6
= x^2(x - 1) + x(x - 1) - 6(x - 1)
= (x - 1)(x^2 + x - 6)
Các bài khác làm tương tự nhé.
3) 6x^3-17x^2+14x-3
Nhẩm nghiệm, thấy x = 1 là nghiệm đa thức => có nhân tử x - 1
6x^3-17x^2+14x-3 = 6x^3 - 6x^2 -11x^2 + 11x + 3x - 3 = 6x^2(x - 1) - 11x(x - 1) + 3(x - 1)
= (x - 1)(6x^2 - 11x + 3)
Đặt x2+5x+4=t ta được:
\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=t\left(t+2\right)-24=t^2+2t-24\)
\(=t^2+6t-4t-24=t\left(t+6\right)-4\left(t+6\right)=\left(t-4\right)\left(t+6\right)\)
\(=\left(x^2+5x\right)\left(x^2+5x+10\right)=x\left(x+5\right)\left(x^2+5x+10\right)\)
Đặt x2+5x+4=t ta được:
(x + 1)(x + 2)(x + 3)(x + 4)−24
= [(x + 1)(x + 4)][(x + 2)(x + 3)] − 24
= (x^2 + 5x + 4)(x^2 + 5x + 6)−24
= t(t + 2) − 24 = t^2 + 2t − 24
= (t − 4)(t + 6)
đến đây thay trở lại
phan tich thanh cac nhan tu da thuc
x^2-25+y+2xy
ab(a+b)+bc(b+c)+ca(c+a)+3abc phan tich da thuc thanh nhan tu cac ban vao giup minh vs vao trong tuong cua minh ai giup minh cho 2 like luon
ab(a+b)+bc(b+c)+ca(c+a)+3abc
=(ab(a+b)+abc)+(bc(b+c)+abc)+(ca(c+a)+abc)
=ab(a+b+c)+bc(b+c+a)+ca(c+a+b)
=(a+b+c)(ab+bc+ca)
1.Xác định các hệ số a và b để đa thức x3+ax+b chia het cho (x-1)2
2.phan tich da thuc sau thanh nhan tu: (x4+x+1)4+1
theo đề bài ta có: (x-1)^2=x^2-2x+1
ta lại có x^3:x^2=x
do đó thương của phép chia đã cho là x+m
(x^3+ax+b) chia hết cho x^2-2x+1
<=> x^3+ax+b=(x^2-2x+1)(x+m)
<=> x^3+ax+b=x^3+x^2m-2x^2-2xm+x+m
<=> x^3+ax+b=x^3+(m-2)x^2+(-2m+1)x+m
Đồng nhất 2 vế ta được :m-2=0=>m=2
-2m+1=a =>-2.2+1=-3=>a=-3
b=m=>b=2
Phan tich da thuc thanh nhan tu
P= x^4 - 64x
Cac ban ghi loi giai ro rang cho minh nha.thanks nhieu
\(P=x^4-64x=x\left(x^3-4^3\right)=x\left(x-4\right)\left(x^2+4x+16\right)\)