Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xem chi tiết
Sukura Minamoto
Xem chi tiết
Nguyễn Thị Diễm Quỳnh
16 tháng 4 2017 lúc 18:17

Ta có:

\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)

Nguyễn acc 2
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 1 2022 lúc 8:50

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{99}{100}\)

Rhider
21 tháng 1 2022 lúc 8:56

\(P=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{99.100}\)

\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{99}-\dfrac{1}{100}\)

\(P=1+\left(\dfrac{-1}{2}+\dfrac{1}{2}\right)+\left(\dfrac{-1}{3}+\dfrac{1}{3}\right)+..+\left(\dfrac{-1}{99}+\dfrac{1}{99}\right)+\dfrac{-1}{100}\)

\(P=1+0+0+....+0+\dfrac{-1}{100}\)

\(P=1+\dfrac{-1}{100}\)

\(P=\dfrac{99}{100}\)

Nguyễn Đình Hào
6 tháng 3 2023 lúc 20:41

=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

=1-1/100

=99/100

 

Phạm Mai Thi
Xem chi tiết
Kiều Vũ Linh
15 tháng 9 2023 lúc 17:00

C = 1/(9.10) - 1/(8.9) - 1/(7.8) - ... - 1/(2.3) - 1/(1.2)

= 1/9 - 1/10 - 1/8 + 1/9 - 1/7 + 1/8 - ... - 1/2 + 1/3 - 1 + 1/2

= 1/9 - 1/10 + 1/9 - 1

= 2/9 - 11/10

= -79/90

Trương Ngọc Linh
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 7 2023 lúc 12:24

`@` `\text {Ans}`

`\downarrow`

`a)`

\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)

`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)

`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)

`=`\(\dfrac{2}{9}\)

Vậy, \(A=\dfrac{2}{9}\)

`b)`

\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)

`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)

`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)

`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)

Vậy, \(B=\dfrac{4}{25}\)

`c)`

\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)

`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)

`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)

`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)

Vậy, \(C=\dfrac{99}{100}\)

Ngọc Anh
Xem chi tiết
TV Cuber
5 tháng 5 2022 lúc 20:33

bài 2:

\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

bài 3:

\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)

\(=>x=3\)

Võ Thanh Tùng
Xem chi tiết
ngonhuminh
5 tháng 3 2018 lúc 20:39

chuyện gì ?

Tóc Em Rối Rồi Kìa
5 tháng 3 2018 lúc 20:39

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{2}-\dfrac{1}{10}\)

\(=\dfrac{2}{5}\)

Việt Anh
5 tháng 3 2018 lúc 21:05

\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{10}\)

\(\Rightarrow\dfrac{2}{5}\)

Tiến
Xem chi tiết
Nguyễn Đức Trí
21 tháng 7 2023 lúc 20:07

\(\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}+\dfrac{1}{9.10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{10}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(100-10\right)-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=1\)

\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=1.2=2\)

\(\Rightarrow\left(x+\dfrac{206}{100}\right)=\dfrac{5}{2}:2=\dfrac{5}{2}.\dfrac{1}{2}=\dfrac{5}{4}\)

\(\Rightarrow x=\dfrac{5}{4}-\dfrac{206}{100}=\dfrac{125}{100}-\dfrac{206}{100}\)

\(\Rightarrow x=-\dfrac{81}{100}\)

Nguyễn Thu Thảo
Xem chi tiết
Đừng Hỏi Tên Tôi
14 tháng 3 2017 lúc 19:15

đây là tính nhanh à nếu tính bình thường thì tính may tính là ra

Nguyễn Thị Lan Anh
14 tháng 3 2017 lúc 19:59

a) 17/23 . 8/16 . 23/17. (-80) . 3/4

= (17/23 . 23/17) . (8/16 . 3/4) . (-80)

= 1 . 3/8 . (-80)

= 3/8 . (-80)

= -30

b) 5/11 . 18/29 - 5/11 . 8/29 + 5/11 . 19/29

= 5/11 . (18/29 - 8/29 + 19/29)

= 5/11 . 1

= 5/11

c)(13/23 + 1313/2323 - 131313/232323).(1/3+1/4 -7/12)

= (13/23 + 1313/2323 - 131313/232323).0

= 0

d) 12/2x2 . 22/2x3 . 32/3x4 . 42/4x5 . 52/5x6 . 62/6x7 . 72/7x8 . 82/8x9 . 92/9x10

= 1/2 . 2/3 . 3/4 . 4/5 . 5/6 . 6/7 . 7/8 . 8/9 .9/10

= 1/10

Khó nhìn quá. Bạn thông cảm nhé! vui

Phạm Linh Giang 01181056...
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
6 tháng 3 2023 lúc 19:25

\(A=\dfrac{7}{1.2}+\dfrac{7}{2.3}+\dfrac{7}{3.4}+...+\dfrac{7}{2011.2012}\)

\(A=7\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\right)\)

\(A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\right)\)

\(A=7\left(1-\dfrac{1}{2012}\right)=7.\dfrac{2011}{2012}=\dfrac{14077}{2012}\)