Tìm x để \(\dfrac{4x^2-8x}{-x^2+x+6}< 0\)
Cho biểu thức : \(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
a, Tìm điều kiện xác định
b, Rút gọn P
c, Tìm giá trị của x để P = 0, P = 1
d, Tìm các giá trị của x để P > 0.
a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm2\\x\ne-3\end{cases}}\)
b) \(P=1+\frac{x+3}{x^2+5x+6}\div\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^2\left(x-2\right)}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x-2\right)\left(x+2\right)}-\frac{1}{x+2}\right)\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{1}{x+2}:\frac{6}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{\left(x-2\right)\left(x+2\right)}{6\left(x+2\right)}\)
\(\Leftrightarrow P=1+\frac{x-2}{6}\)
\(\Leftrightarrow P=\frac{x+4}{6}\)
c) Để P = 0
\(\Leftrightarrow\frac{x+4}{6}=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Để P = 1
\(\Leftrightarrow\frac{x+4}{6}=1\)
\(\Leftrightarrow x+4=6\)
\(\Leftrightarrow x=2\)
d) Để P > 0
\(\Leftrightarrow\frac{x+4}{6}>0\)
\(\Leftrightarrow x+4>0\)(Vì 6>0)
\(\Leftrightarrow x>-4\)
Cho biểu thức A = \(\left(\dfrac{4x}{x+2}-\dfrac{x^3-8}{x^3+8}.\dfrac{4x^2-8x+16}{x^2-4}\right):\dfrac{16}{x^2-x-6}\)
a) Rút gọn A
b) Tìm x để A < 0
c) Tìm x để A ≥ 5
Cho biểu thức \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\). Tìm các giá trị của x để P<0
ĐKXĐ: \(x\notin\left\{2;-2;0;3\right\}\)
Ta có: \(P=\left(\dfrac{4x}{2+x}+\dfrac{8x^2}{4-x^2}\right):\left(\dfrac{x-1}{x^2-2x}-\dfrac{2}{x}\right)\)
\(=\left(\dfrac{4x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{8x^2}{\left(x+2\right)\left(x-2\right)}\right):\left(\dfrac{x-1}{x\left(x-2\right)}-\dfrac{2\left(x-2\right)}{x\left(x-2\right)}\right)\)
\(=\dfrac{4x^2-8x-8x^2}{\left(x+2\right)\left(x-2\right)}:\dfrac{x-1-2x+4}{x\left(x-2\right)}\)
\(=\dfrac{-4x^2-8x}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x-2\right)}{-x+3}\)
\(=\dfrac{-4x\left(x+2\right)}{x+2}\cdot\dfrac{x}{3-x}\)
\(=\dfrac{-4x^2}{3-x}\)
Để P<0 thì \(\dfrac{-4x^2}{3-x}< 0\)
mà \(-4x^2< 0\forall x\) thỏa mãn ĐKXĐ
nên 3-x<0
hay x>3
Kết hợp ĐKXĐ, ta được: x>3
Vậy: Để P<0 thì x>3
\(\dfrac{4x^2-8x}{-x^2+x+6}< 0\)
Lời giải:
\(\frac{4x^2-8x}{-x^2+x+6}<0\\
\Leftrightarrow \frac{4x(x-2)}{-(x^2-x-6)}<0\\
\Leftrightarrow \frac{4x(x-2)}{x^2-x-6}>0\\
\Leftrightarrow \frac{4x(x-2)}{(x+2)(x-3)}>0\)
Đến đây xảy ra 2 TH:
TH1: $4x(x-2)>0$ và $(x+2)(x-3)>0$
$4x(x-2)>0\Leftrightarrow x> 2$ hoặc $x<0(1)$
$(x+2)(x-3)>0\Leftrightarrow x> 3$ hoặc $x<-2(2)$
Từ $(1); (2)\Rightarrow x>3$ hoặc $x<-2$
TH2: $4x(x-2)<0$ và $(x+2)(x-3)<0$
$4x(x-2)<0\Leftrightarrow 0< x< 2(3)$
$(x+2)(x-3)<0\Leftrightarrow -2< x< 3(4)$
Từ $(3); (4)\Rightarrow 0< x< 2$
Vậy $x>3$ hoặc $x< -2$ hoặc $0< x< 2$
tìm x để các biểu thức sau xác định:
a. \(\sqrt{x^2-x-6}\)
b. \(\sqrt{4x-x^2-5}\)
c. \(\sqrt{\dfrac{1}{x^2-8x+15}}\)
Lời giải:
a. Để biểu thức xác định thì:
$x^2-x-6\geq 0$
$\Leftrightarrow (x+2)(x-3)\geq 0$
$\Leftrightarrow x\geq 3$ hoặc $x\leq -2$
b. Để biểu thức xác định thì:
$4x-x^2-5\geq 0$
$\Leftrightarrow x^2-4x+5\leq 0$
$\Leftrightarrow (x-2)^2+1\leq 0$
$\Leftrightarrow (x-2)^2\leq -1< 0$ (vô lý)
Vậy không tồn tại $x$ để bt xác định
c. Để biểu thức xác định thì:
$x^2-8x+15>0$
$\Leftrightarrow (x-3)(x-5)>0$
$\Leftrightarrow x>5$ hoặc $x< 3$
a) ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le-2\end{matrix}\right.\)
b) ĐKXĐ: \(x\in\varnothing\)
c) ĐKXĐ: \(\left[{}\begin{matrix}x>5\\x< 3\end{matrix}\right.\)
Giải phương trình:
1. \(x^4-6x^2-12x-8=0\)
2. \(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
3. \(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
4. \(2x^2.\sqrt{-4x^4+4x^2+3}=4x^4+1\)
5. \(x^2+4x+3=\sqrt{\dfrac{x}{8}+\dfrac{1}{2}}\)
6. \(\left\{{}\begin{matrix}4x^3+xy^2=3x-y\\4xy+y^2=2\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}\sqrt{x^2-3y}\left(2x+y+1\right)+2x+y-5=0\\5x^2+y^2+4xy-3y-5=0\end{matrix}\right.\)
8. \(\left\{{}\begin{matrix}\sqrt{2x^2+2}+\left(x^2+1\right)^2+2y-10=0\\\left(x^2+1\right)^2+x^2y\left(y-4\right)=0\end{matrix}\right.\)
1.
\(x^4-6x^2-12x-8=0\)
\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)
\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)
\(\Leftrightarrow x=1\pm\sqrt{5}\)
3.
ĐK: \(x\ge-9\)
\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)
\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)
\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)
Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)
\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)
\(\Leftrightarrow...\)
2.
ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)
\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)
Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)
\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)
Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:
\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)
\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)
\(\Leftrightarrow10b+40=3\left(b+8\right)b\)
\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)
TH1: \(b=2\Leftrightarrow...\)
TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)
Cho biểu thức : P = 1 + \(\dfrac{x+3}{x^2+5x+6}:\)(\(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\))
a, Rút gọn P
b, Tính giá trị của x để P = 0 , P = 1
c, Tìm các giá trị của x để P > 0
\(a.P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{3}{x^2-4}-\dfrac{1}{x+2}\right)=\dfrac{x+3}{x+2}.\dfrac{\left(x+2\right)\left(x-2\right)}{2x+4-3-x+2}=\left(x+3\right).\dfrac{x-2}{x+3}=x-2\left(x\ne\pm2;x\ne-3\right)\)
\(b.P=0\Leftrightarrow x-2=0\Leftrightarrow x=2\left(KTM\right)\)
\(P=1\Leftrightarrow x-2=1\Leftrightarrow x=3\left(TM\right)\)
\(c.P>0\Leftrightarrow x-2>0\Leftrightarrow x>2\)
Với giá trị nào của x, giá trị của biểu thức sau bagfw 0:
\(\dfrac{1+8x}{4+8x}\) - \(\dfrac{4x}{12x-6}\) + \(\dfrac{\dfrac{32}{3}x^2}{4-16x^2}\) ??
Cho biểu thức : \(P=1+\dfrac{x+3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)
a, Tìm điều kiện xác định
b, Rút gọn P
c, Tìm giá trị của x để P = 0, P = 1
d, Tìm các giá trị của x để P > 0.
a: ĐKXĐ: x<>0; x<>-2; x<>2; x<>-3
b: \(P=1+\dfrac{1}{x+2}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\left(\dfrac{2}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)
\(=1+\dfrac{1}{x+2}:\dfrac{2x+4-x-x+2}{\left(x-2\right)\left(x+2\right)}\)
\(=1+\dfrac{1}{x+2}\cdot\dfrac{\left(x+2\right)\left(x-2\right)}{6}=1+\dfrac{x-2}{6}=\dfrac{6+x-2}{6}=\dfrac{x-4}{6}\)
c: Để P=0 thì x-4=0
=>x=4(nhận)
Khi P=1 thì x-4=6
=>x=10
d Để P>0 thì x-4>0
=>x>4