Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phương Nhi Nguyễn
Xem chi tiết
vu tuananh
Xem chi tiết
nguyen ha giang
Xem chi tiết
vu tuananh
Xem chi tiết
Zodiacs
Xem chi tiết
Lôi Long
21 tháng 12 2017 lúc 17:26

\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

\(3\sqrt{2}=\sqrt{9.2}=\sqrt{18}\)

do đó \(2\sqrt{3}< 3\sqrt{2}\)

Muỗi đốt
26 tháng 12 2017 lúc 19:53

bạn hỏi chán thế bài này dễ mà hay bạn hỏi hộ người khác à

Hạnh Nguyễn
Xem chi tiết
Biokgnbnb
Xem chi tiết
Nguyễn Quốc Gia Huy
28 tháng 8 2017 lúc 20:59

a) \(\sqrt{2004}-\sqrt{2003}=\frac{1}{\sqrt{2004}+\sqrt{2003}}>\frac{1}{\sqrt{2006}+\sqrt{2005}}=\sqrt{2006}-\sqrt{2005}\)

b) Tương tự.

Dennis
Xem chi tiết
Mỹ Duyên
16 tháng 6 2017 lúc 21:32

Cách 1: Theo casio ta có:

+ \(\sqrt{3}+\sqrt{7}\approx4,378\)

+ \(\sqrt{19}\approx4,36\)

=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)

Cách 2: Ta có: \(\left(\sqrt{3}+\sqrt{7}\right)^2=3+7+2.\sqrt{21}=10+\sqrt{84}\)

\(\left(\sqrt{19}\right)^2=19=10+\sqrt{81}\)

\(10+\sqrt{84}>10+\sqrt{81}\)

=> \(\left(\sqrt{3}+\sqrt{7}\right)^2>\left(\sqrt{19}\right)^2\)

=> \(\sqrt{3}+\sqrt{7}>\sqrt{19}\)

Đức Huy ABC
17 tháng 6 2017 lúc 11:50

Ta có: \(\left(\sqrt{3}+\sqrt{7}\right)^2=10+2\sqrt{21}>10+2\sqrt{20,25}=10+2\sqrt{\left(4,5\right)^2}=10+2.4,5=10+9=19=\left(\sqrt{19}\right)^2\)

(Vì 21 > 20,25 > 0 => \(\sqrt{21}>\sqrt{20,25}\))

Mà 2 biểu thức so sánh đều dương

=>\(\sqrt{3}+\sqrt{7}>\sqrt{19}\).

Giang Nguyễn
Xem chi tiết