Cho hai tia Ax và By không song song và điểm M bất kỳ. Không xác định giao điểm của Ax và By, dựng đường thẳng qua M vuông góc với tia phân giác của góc giữa Ax và By.
(Trình bày cách làm ra giùm mình nha! ♥ )
2. Cho hai tia Ax, By không song song và điểm M bất kỳ. Không xác định giao điểm của Ax và By, dựng đường thẳng qua M vuông góc với tia phân giác của góc giữa Ax và By
Cho hai tia Ax và By vuông góc với nhau nhận AB làm đoạn vuông góc chung. Gọi M và N là hai điểm di động lần lượt trên Ax và By sao cho AM + BN = MN.
Đặt AB = 2a, gọi O là trung điểm của AB và H là hình chiếu vuông góc điểm O trên đường thẳng MN
a) Chứng minh rằng OH = a, HM = AN, HN = BN.
b) Gọi Bx' là tia song song và cùng chiều với tia Ax và K là hình chiếu vuông góc của H trên mặt phẳng (Bx'; By). Chứng minh BK là phân giác của góc ∠x'By.
C. Chứng minh điểm H nằm trên một đường tròn cố định.
Theo giả thiết ta có M và N là hai điểm di động lần lượt trên hai tia Ax và By sao cho AM + BN = MN.
a) Kéo dài MA một đoạn AP = BN, ta có MP = MN và OP = ON.
Do đó ΔOMP = ΔOMN (c.c.c)
⇒ OA = OH nên OH = a.
Ta suy ra HM = AM và HN = BN.
b) Gọi M’ là hình chiếu vuông góc của điểm M trên mặt phẳng (Bx’, By) ta có:
HK // MM’ với K ∈ NM’.
Do đó đối với tam giác BNM’ đường thẳng BK là phân giác của góc (x'By) .
c) Gọi (β) là mặt phẳng (AB, BK). Vì HK // AB nên HK nằm trong mặt phẳng (β) và do đó H thuộc mặt phẳng (β). Trong mặt phẳng (β) ta có OH = a. Vậy điểm H luôn luôn nằm trên đường tròn cố định, đường kính AB và nằm trong mặt phẳng cố định (β) = (AB, BK)
cho tia Ax và tia By song song và trên đường thẳng c vuông góc với tia Ax, tia By lấn lượt tại điểm A và B. Trên tia Ax lấy điểm P,trên tia By lấy điểm Q sao cho AP=BQ
a)chứng minh BP=AQ
b)Gọi I là giao điểm của BP và AQ, chứng minh tam giác IAP=tam giác IQB
c)Qua I kẻ đường thẳng song song với tia Ax cắt đường thẳng c tại D. Chứng minh D là trung điểm của AB
a: Xét ΔMHA vuông tại H và ΔMKB vuông tại K có
MA=MB
\(\widehat{MAH}=\widehat{MBK}\)(hai góc so le trong, AH//BK)
Do đó: ΔMHA=ΔMKB
=>MH=MK
b: Ta có: ΔMHA=ΔMKB
=>\(\widehat{HMA}=\widehat{KMB}\)
mà \(\widehat{KMB}+\widehat{KMA}=180^0\)(hai góc kề bù)
nên \(\widehat{HMA}+\widehat{KMA}=180^0\)
=>\(\widehat{HMK}=180^0\)
=>H,M,K thẳng hàng
Cho hai tia Ax và By vuông góc với nhau nhận AB làm đoạn vuông góc chung. Gọi M và N là hai điểm di động lần lượt trên Ax và By sao cho AM + BN = MN
Đặt AB = 2a, gọi O là trung điểm của AB và H là hình chiếu vuông góc của điểm O trên đường thẳng MN
a) Chứng minh rằng OH = a, HM = AM, HN = BN
b) Gọi Bx' là tia song song và cùng chiều với tia Ax và K là hình chiếu vuông góc của H trên mặt phẳng (Bx',By). Chứng minh BK là phân giác của góc x'By ?
c) Chứng minh điểm H nằm trên một đường tròn cố định ?
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh rằng CH AB ⊥ .
c) Chứng minh tam giác PIQ cân.
a: Xét ΔPMB và ΔPQA có
\(\widehat{PBM}=\widehat{PAQ}\)
PB=PA
\(\widehat{MPB}=\widehat{QPA}\)
Do đó: ΔPMB=ΔPQA
Suy ra: MB=AQ
Xét tứ giác AMBQ có
MB//AQ
MB=AQ
Do đó: AMBQ là hình bình hành
mà \(\widehat{MAQ}=90^0\)
nên AMBQ là hình chữ nhật
Câu a có r mk ko ghi lại nx nhe
b) Ta có AQBM là HCN (CMa)
=> ^AQB=900 hay BQ ⊥ AC
=> BQ là đường cao của ΔABC
Mà H là giao điểm của 2 đường cao AI và BQ của ΔABC (gt)
=> H là trực tâm của ΔABC
=> CH cũng là đường cao của ΔABC (H là trực tâm; H ∈ CH)
=> CH ⊥ AB (đpcm)
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
b) Chứng minh rằng CH⊥ AB .
c) Chứng minh tam giác PIQ cân.
Cho tam giác ABC có đường cao AI. Từ A kẻ tia Ax vuông góc với AC, từ B kẻ tia By song song với AC. Gọi M là giao điểm của tia Ax và tia By. Nối M với trung điểm P của AB, đường MP cắt AC tại Q và BQ cắt AI tại H.
a) Tứ giác AMBQ là hình gì?
c) Chứng minh tam giác PIQ cân.