tìm cặp số nguyên (x,y) thỏa mãn `x^2 -xy-2022x+2023y-2024=0`
tìm các cặp số nguyên x;y thoả mãn x^2 xy=2022x 2023y 2024
Tìm tất cả các cặp số nguyên (x;y) thỏa mãn
x2+xy=2022x+2023y+2024
tìm các cặp số nguyên x,y thoả mãn x^2+xy=2022x+2023y+2024 (cần gấp)
Cho hai số thực x, y thỏa mãn x^2 + y^2 - 2x - 4y + 6 = 1 - (x - y + 1)^2. Tính giá trị biểu thức A = 2022x + 2023y
x^2+y^2-2x-4y+6=1-(x-y+1)^2
=>x^2-2x+1+y^2-4y+4=-(x-y+1)^2
=>(x-1)^2+(y-2)^2=-(x-y+1)^2
=>(x-1)^2+(y-2)^2+(x-y+1)^2=0
=>x=1;y=2
A=2022+2023*2
=2022+4046
=6068
tìm x,y thỏa mãn đẳng thức sau: x2-2xy+2y2+2y+1=0
tính giá trị của biểu thức : B=2022x+2023y
=>x^2-2xy+y^2+y^2+2y+1=0
=>(x-y)^2+(y+1)^2=0
=>x=y=-1
B=-2022-2023=-4045
Tìm các cặp số nguyên (x,y) thỏa mãn:
\(^{x^2+xy-2019x-2020y-2021=0}\)
Tìm các cặp số nguyên (x;y) thỏa mãn : \(x^2y+xy-2x^2-3x+4=0\)
tìm các cặp số nguyên dương (x,y) thỏa mãn : 2x^2-xy-x-2y+1=0
\(\Leftrightarrow2x^2-x+1=xy+2y\)
\(\Leftrightarrow2x^2-x+1=y\left(x+2\right)\)
\(\Leftrightarrow y=\dfrac{2x^2-x+1}{x+2}=2x-5+\dfrac{11}{x+2}\)
Do y nguyên \(\Rightarrow\dfrac{11}{x+2}\) nguyên \(\Rightarrow x+2=Ư\left(11\right)\)
Mà x nguyên dương \(\Rightarrow x+2\ge3\Rightarrow x+2=11\Rightarrow x=9\)
\(\Rightarrow y=14\)
Vậy \(\left(x;y\right)=\left(9;14\right)\)