Giải phương trình \((m-3)x^2-2(3m+1)x+9m-2=0\)
Phương trình ( m – 3 ) x 2 – 2 ( 3 m + 1 ) x + 9 m – 1 = 0 có nghiệm khi?
A. m ≥ 1 17
B. m = 3
C. m ≥ 3
D. Với mọi m
Phương trình (m – 3)x2 – 2(3m + 1)x + 9m – 1 = 0
có a = m – 3; b’ = − (3m + 1) và c = 9m – 1
TH1: Nếu m – 3 = 0 ⇒ m = 3 thì phương trình
(m – 3)x2 – 2(3m + 1)x + 9m – 1 = 0
trở thành −2(3.3 + 1) x + 9.3 – 1 = 0
⇒ −20x + 26 = 0 ⇒ x = 13 10
Vậy m = 3 thì phương trình có nghiệm duy nhất nên ta nhận m = 3
TH2: m ≠ 3 thì phương trình là phương trình bậc hai.
Phương trình có nghiệm khi
∆ ' = [− (3m + 1)]2 – (m – 3)(9m – 1) ≥ 0
9m2 + 6m + 1 – 9m2 + m + 27m – 3 ≥ 0
⇔ m ≥ 1 17
Vậy m ≥ 1 17 thì phương trình có nghiệm
Đáp án cần chọn là: A
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
a) Giải phương trình: x^2+9x^2/(x+3)^2=40 b) Tìm m sao cho phương trình:(m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn: x lớn hơn hoặc bằng 1
a) Ta có: \(x^2+\dfrac{9x^2}{\left(x+3\right)^2}=40\)
\(\Leftrightarrow\dfrac{\left(x^2+3x\right)^2+9x^2}{\left(x+3\right)^2}=40\)
\(\Leftrightarrow x^4+6x^3+9x^2+9x^2=40\left(x+3\right)^2\)
\(\Leftrightarrow x^4+6x^3+18x^2=40\left(x^2+6x+9\right)\)
\(\Leftrightarrow x^4+6x^3+18x^2-40x^2-240x-360=0\)
\(\Leftrightarrow x^4+6x^3-22x^2-240x-360=0\)
\(\Leftrightarrow x^4+2x^3+4x^3+8x^2-30x^2-60x-180x-360=0\)
\(\Leftrightarrow x^3\left(x+2\right)+4x^2\left(x+2\right)-30x\left(x+2\right)-180\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3+4x^2-30x-180\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-6x^2+10x^2-60x+30x-180\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[x^2\left(x-6\right)+10x\left(x-6\right)+30\left(x-6\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\cdot\left(x-6\right)\left(x^2+10x+30\right)=0\)
mà \(x^2+10x+30>0\forall x\)
nên \(\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=6\end{matrix}\right.\)
Vậy: S={-2;6}
b) Ta có: (m-1)x+3m-2=0
\(\Leftrightarrow\left(m-1\right)x=2-3m\)
\(\Leftrightarrow x=\dfrac{2-3m}{m-1}\)
Để phương trình có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{2-3m}{m-1}\ge1\)
\(\Leftrightarrow\dfrac{2-3m}{m-1}-1\ge0\)
\(\Leftrightarrow\dfrac{2-3m-\left(m-1\right)}{m-1}\ge0\)
\(\Leftrightarrow\dfrac{2-3m-m+1}{m-1}\ge0\)
\(\Leftrightarrow\dfrac{-4m+3}{m-1}\ge0\)
hay \(\dfrac{3}{4}\le m< 1\)
Vậy: Để phương trình (m-1)x+3m-2=0 có nghiệm duy nhất thỏa mãn \(x\ge1\) thì \(\dfrac{3}{4}\le m< 1\)
GIÚP MÌNH VỚI :))
1) Cho phương trình: 2x2 - ( 2m + 1 ) x + m2 - 9m + 39 = 0
a. Giải phương trình khi m=9
b. Tìm m để phương trình có 2 nghiệm phân biệt
2) Cho phương trình: x2 - 2 (m - 1) x -3 - m =0
a. Giải phương trình khi m=-1
b) Tìm m để phương trình có 2 nghiệm phân biệt
Bài 1: Giải và biện luận các phương trình sau:
a) m(m-x)= 3(x+3)-6m
b) mx-3m=2x-3
c) (m^2 -9)x=m^2 +3m
Bài 2: Giải và biện luận các phương trình sau:
a) m(m-1)=2(2x+1)
b) (m^2 - 9)x=m^2 +3m
c) m(m-1)= 2(4-x)
d) (m^2 -3m+2)x= m-2
Các cậu giúp tớ với ạ, không cần làm hết đâu ạ, mng biết câu nào thì làm hộ tớ với nhé, plss!
Vì hai bài giống nhau nên anh sẽ làm mẫu bài 1 nhé.
Câu 1: Cho phương trình: x\(^2\) - 5x + m = 0 (m là tham số)
a) Giải phương trình trên khi m = 6
b) Tìm m để phương trình trên có hai nghiệm x\(_1\), x\(_2\) thỏa mãn: \(\left|x_1-x_2\right|=3\)
Câu 2: Cho phương trình 2x\(^2\) - 6x + 3m + 2 = 0 ( với m là tham số). Tìm các giá trị của m để phương trình đã cho có hai nghiêm x\(_1\), x\(_2\) thảo mãn: \(x^3_1+x^3_2=9\)
Cho phương trình: x2 - 2(m - 1)x + m2 - 3m = 0 . Giải phương trình khi m = −2.
Thay \(m=-2\) vào pt : \(x^2-2\left(m-1\right)x+m^2-3m=0\)
\(\Rightarrow x^2-2\left(-2-1\right)x+\left(-2\right)^2-3.\left(-2\right)=0\)
\(\Rightarrow x^2+6x+4+6=0\)
\(\Rightarrow x^2+6x+10=0\)
\(\Delta=b^2-4ac=6^2-4.10.1=-4< 0\)
Vậy pt vô nghiệm khi m = -2
GIÚP MÌNH VỚI :))
1) Cho phương trình: 2x2 - ( 2m + 1 ) x + m2 - 9m + 39 = 0
a. Giải phương trình khi m=9
b. Tìm m để phương trình có 2 nghiệm phân biệt
2) Cho phương trình: x2 - 2 (m - 1) x -3 - m =0
a. Giải phương trình khi m=-1
b) Tìm m để phương trình có 2 nghiệm phân biệt
giải phương trình x^2 -(m^2 -3m)x+m^3=0 làm ơn giải giúp mình với