Tìm \(m\) để phương trình sau có nghiệm:
\(\left(3-m\right)\sqrt{x^3+4x}+x^2+\left(m-2\right)x+4=0\)
Tìm m để các phương trình sau (dùng công thức nghiệm thu gọn)
a.\(x^2+2\left(m-2\right)x+m^2-3=0\) có nghiệm
b.\(\left(2m-1\right)x-4mx+2m+3=0\) có nghiệm kép
c.\(4x^2-2\left(2m-1\right)x+m^2=0\) vô nghiệm
a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)
\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)
=>-16m>=-28
hay m<=7/4
b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)
\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)
=>4m-3=0
hay m=3/4
c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)
=>-16m+4<0
hay m>1/4
Tìm m để phương trình \(\left(x^2-4x\right)^2-3\left(x-2\right)^2+m=0\) có 4 nghiệm phân biệt
\(\Leftrightarrow\left[\left(x-2\right)^2-4\right]^2-3\left(x-2\right)^2+m=0\)
\(\left(x-2\right)^2=t\ge0\Rightarrow pt\Leftrightarrow\left(t-4\right)^2-3t+m=0\)
\(\Leftrightarrow t^2-11t+16+m=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=11^2-4\left(16+m\right)>0\\x_1+x_2=11>0\left(tm\right)\\x_1x_2=16+m>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{57}{4}\\m< 16\end{matrix}\right.\Leftrightarrow m< \dfrac{57}{4}\)
a) Tìm m để phương trình\(\left(m+3\right)x^2-\left(m^2+5m\right)x+2m^2=0\) có nghiệm x=-2
tìm nghiệm còn lại
b Tìm m để phương trình \(\left(m^2-1\right)x^2-2mx+m^2+m+4=0\) có nghiệm x=2
Tìm nghiệm còn
lại?
b) Thay x=2 vào pt, ta được:
\(4\left(m^2-1\right)-4m+m^2+m+4=0\)
\(\Leftrightarrow4m^2-4-4m+m^2+m+4=0\)
\(\Leftrightarrow5m^2-3m=0\)
\(\Leftrightarrow m\left(5m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=\dfrac{3}{5}\end{matrix}\right.\)
Áp dụng hệ thức Vi-et, ta được:
\(x_1+x_2=\dfrac{2m}{m^2-1}\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2+2=0\\x_2+2=\dfrac{6}{5}:\left(\dfrac{36}{25}-1\right)=\dfrac{30}{11}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=-2\\x_2=\dfrac{8}{11}\end{matrix}\right.\)
1. Cho hàm số \(y=\left|\dfrac{x^2+\left(m+2\right)x-m^2}{x+1}\right|\) . GTLN của hàm số trên đoạn \(\left[1;2\right]\)
có GTNN bằng
2.Tìm tham số thực \(m\) để phương trình
\(\left(4m-3\right)\sqrt{x+3}+\left(3m-4\right)\sqrt{1-x}+m-1=0\) có nghiệm thực
3.Tìm \(m\) để \(x^2+\left(m+2\right)x+4=\left(m-1\right)\sqrt{x^3+4x}\) , (*) có nghiệm thực
4.Cho hàm số \(y=f\left(x\right)\) liên tục và có đạo hàm \(f'\left(x\right)=\left(x+2\right)\left(x^2-9\right)\left(x^4-16\right)\) trên \(R\) . Hàm số đồng biến trên thuộc khoảng nào trên các khoảng sau đây
\(A.\left(1-\sqrt{3};1+\sqrt{3}\right)\)
B.(\(3;\)+∞)
\(C.\)(1;+∞)
D.\(\left(-1;3\right)\)
cho hàm số \(y=x^2-4x+3\). Tìm m để phương trình \(\left|x^2-4x+3\right|+2m=0\)có 4 nghiệm phân biệt? Tìm m để phương trình \(x^2-4\left|x\right|+1+2m^2=0\)có 2 nghiệm song song
Tìm m để phương trình sau có nghiệm kép, tìm nghiệm kép đó.
\(x^2-2\left(m-1\right)x+2\left(m+2-\sqrt{2}\right)=0\)
\(\Delta=\left(2m-2\right)^2-4\cdot2\cdot\left(m+2-\sqrt{2}\right)\)
\(=4m^2-8m+4-8m-8+8\sqrt{2}\)
\(=4m^2-16m+8\sqrt{2}-4\)
Để phương trình có nghiệm kép thì \(4m^2-16m+8\sqrt{2}-4=0\)
=>\(m^2-4m+2\sqrt{2}-1=0\)
=>\(\Delta=\left(-4\right)^2-4\left(2\sqrt{2}-1\right)=16-8\sqrt{2}+4=20-8\sqrt{2}>0\)
=>Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m=\dfrac{4-\sqrt{20-8\sqrt{2}}}{2}=2-\sqrt{5-2\sqrt{2}}\\m=2+\sqrt{5-2\sqrt{2}}\end{matrix}\right.\)
c1: Rút gọn biểu thức A=\(\left(\dfrac{1}{x-2\sqrt{x}}-\dfrac{2}{6-3\sqrt{x}}\right):\left(\dfrac{2}{3}+\dfrac{1}{\sqrt{x}}\right)\)
c2: Cho phương trình: \(x^2-2\left(2m-1\right)x+m^2-4m=0\left(1\right)\)
Tìm m để phương trình (1) có hai nghiệm phân biệt x1, x2 thoả mãn hệ thức \(x_1+x_2=\dfrac{-8}{x_1+x_2}\)
1:
\(=\left(\dfrac{1}{x-2\sqrt{x}}+\dfrac{2}{3\sqrt{x}-6}\right):\dfrac{2\sqrt{x}+3}{3\sqrt{x}}\)
\(=\dfrac{3+2\sqrt{x}}{3\sqrt{x}\left(\sqrt{x}-2\right)}\cdot\dfrac{3\sqrt{x}}{2\sqrt{x}+3}=\dfrac{1}{\sqrt{x}-2}\)
Tìm m để phương trình có nghiệm
\(\sqrt{2x^2-2\left(m+4\right)x+5m+10}-x+3=0\)
\(\Leftrightarrow\sqrt{2x^2-2\left(m+4\right)x+5m+10}=x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3\ge0\\2x^2-2\left(m+4\right)x+5m+10=x^2-6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x^2-2\left(m+1\right)x+5m+1=0\left(1\right)\end{matrix}\right.\)
Pt đã cho có nghiệm khi (1) có ít nhất 1 nghiệm thỏa mãn \(x\ge3\)
- Để (1) có nghiệm \(\Leftrightarrow\Delta'=\left(m+1\right)^2-\left(5m+1\right)\ge0\Leftrightarrow m^2-3m\ge0\Rightarrow\left[{}\begin{matrix}m\ge3\\m\le0\end{matrix}\right.\) (1)
- Để 2 nghiệm của (1) thỏa mãn \(x_1\le x_2< 3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1-3\right)\left(x_2-3\right)>0\\\dfrac{x_1+x_2}{2}< 3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-3\left(x_1+x_2\right)+9>0\\x_1+x_2< 6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5m+1-6\left(m+1\right)+9>0\\2\left(m+1\right)< 6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m< 2\end{matrix}\right.\) \(\Rightarrow m< 2\)
\(\Rightarrow\) Để pt có ít nhất 1 nghiệm thỏa mãn \(x\ge3\) thì \(m\ge2\) (2)
Kết hợp (1); (2) \(\Rightarrow m\ge3\)
Cho phương trình:
\(-x^2+2x+4\sqrt{\left(3-x\right)\left(x+1\right)}=m-2\)
Tìm m để pt có nghiệm
ĐK; \(-1\le x\le3\)
Đặt \(\sqrt{-x^2+2x+3}=t\left(0\le t\le2\right)\)
\(pt\Leftrightarrow m+1=-x^2+2x+3+4\sqrt{-x^2+2x+3}\)
\(\Leftrightarrow m+1=f\left(t\right)=t^2+4t\)
\(f\left(0\right)=0;f\left(2\right)=12\)
Yêu cầu bài toán thỏa mãn khi \(minf\left(t\right)\le m+1\le maxf\left(t\right)\)
\(\Leftrightarrow0\le m+1\le12\)
\(\Leftrightarrow-1\le m\le11\)