Tìm \(n\in N\)sao cho : \(\left(n-2\right)\left(n^2+n-1\right)\)là số nguyên tố !
Tìm số tự nhiên n sao cho \(P=\left(n-2\right).\left(n^2+n-1\right)\)là số nguyên tố.
Bài 1 : Tìm số nguyên tố biết rằng số đó bằng tổng của 2 số nguyên tố và cũng bằng hiệu của 2 số nguyên tố khác
Bài 2: Tìm số tự nhiên n sao cho \(p=\left(n-2\right)\left(n^2+n-5\right)\)là số nguyên tố
Giup mk nhanh nha các bạn!
Câu hỏi của Davids Villa - Toán lớp 6 - Học toán với OnlineMath
Xem bài 1 tai jđây nhé ! mk ngại viết
Bài 1:
Gọi p là số nguyên tố cần tìm và \(p=a+b=c-d\)với \(a,b,c,d\)là các số nguyên tố ,\(c>d\)
Vì \(p=a+b>2\)nên p là số lẻ
\(\Rightarrow a+b\)và \(c-d\)là các số lẻ
Vì \(a+b\)là số lẻ nên một trong hai số \(a,b\)là số chẵn ,giả sử b chẵn .Vì b là số nguyên tố nên \(b=2\)
Vì \(c-d\)là số lẻ nên một trong hai số \(c,d\)là số chẵn .Vì \(c,d\)là các số nguyên tố \(c>d\)nên d là số chẵn \(\Rightarrow d=2\)
Do vậy :\(p=a+2=c-2\Rightarrow c=a+4\)
Ta cần tìm số nguyên tố a để \(p=a+2\)và \(c=a+4\)cũng là số nguyên tố
Vậy số nguyên tố cần tìm là 5: với \(5=3+2=7-2\)
Bài 2 :
Từ \(p=\left(n-2\right)\left(n^2+n-5\right)\)suy ra \(n-2\) và \(n^2+n-5\)là ước của p
Vì p là số nguyên tố nên hoặc \(n-2=1\)hoặc \(n^2+n-5=1\)
Nếu \(n-2=1\)thì \(n=3\)
Khi đó \(p=1.\left(3^2+3-5\right)=7\)là số nguyên tố (thảo mãn)
Nếu \(n^2+n-5=1\Leftrightarrow n^2+n=6\Leftrightarrow n\left(n+1\right)\)\(=2.3\Rightarrow n=2\)
Khi đó \(p=\left(2-2\right).1=0\)không là số nguyên tố
Vậy \(n=3\)
Chúc bạn học tốt ( -_- )
Tìm số nguyên tố a sao cho \(\left(\frac{1}{b}\right)^2=\frac{9}{-9+225a}+\frac{\left(1+2+3+...+n\right)^2-\left(1^3+2^3+3^3+...+n^3\right)}{2500}\)và b cũng là số nguyên tố.
1) Tính:\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
2) Tìm tất cả các số nguyên tố x,y sao cho x2 - 6y2 - 1 = 0
3) Cho \(n\in N\)biết n-10; n+4. n+60 đều là số nguyên tố. CMR: n+90 là số nguyên tố
4) Tính nhanh
\(A=\left(\frac{7}{9}+1\right)\left(\frac{7}{20}+1\right)\left(\frac{7}{33}+1\right).....\left(\frac{7}{10800}+1\right)\)
Các bn giúp mk nhanh lên nhé
\(A=3-\frac{1}{2}-\frac{1}{6}-\frac{1}{12}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}\)
\(A=3-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(A=3-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(A=3-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(A=3-\left(1-\frac{1}{8}\right)\)
\(A=3-\frac{5}{8}\)
\(A=\frac{19}{8}\)
a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)
b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)
A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)
Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)
=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)
B)
Do 1 lẻ , \(2q^2\) chẵn nên p lẻ
p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)
p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4
⇒\(q^2\):2 =>q:2 =>q=2
⇒\(q^2\)=2.2\(^2\)+1=9=>q=3
Chắc đúng vì hôm trước cô mik giải thik va, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)
=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)⋮\(\dfrac{n\left(n+1\right)}{2}\)
=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)
đpcm
tìm số nguyên n để (n-2)n(n+2) là số nguyên tố
tồn tại hay không \(n\in Z;;p\in P\)thỏa mãn phương trình:
\(\left(n-2\right)n\left(n+2\right)=p\)
Tìm số tự nhiên n sao cho \(n-1;\left(n-1\right)^2+1994\)là các số nguyên tố
1. Chứng minh rằng nếu p là số nguyên tố lớn hơn 3 thì \(\left(p-1\right)\left(p+1\right)⋮24\)
2. Tìm số nguyên n sao cho : \(n^2-2\)chia hết cho n+3
3 . Tìm số tự nhiên n ( n > 0 ) sao cho tổng :
1! +2!+3! + ... +n! là một số chính phương
tìm n thuộc n để B=\(\frac{n\left(n+1\right)\left(n+2\right)}{6}+1\) là số nguyên tố