Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ILoveMath

a, CMR nếu n là số nguyên dương thì \(2\left(1^{2013}+2^{2013}+...+n^{2013}\right)\) chia hết cho \(n\left(n+1\right)\)

b, Tìm tất cả các số nguyên tố p,q tm đk \(p^2-2q^2=1\)

nhung olv
26 tháng 11 2021 lúc 22:09

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
❤X༙L༙R༙8❤
26 tháng 11 2021 lúc 22:14

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm


Các câu hỏi tương tự
Vô danh
Xem chi tiết
Hoàng Phúc
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
hh hh
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
Võ Hồng Phúc
Xem chi tiết
nguyentancuong
Xem chi tiết
Phạm Thị Hằng
Xem chi tiết
liên hoàng
Xem chi tiết