tìm tập hợp điểm M thỏa mãn hệ thức
2
−−→
M
A
+
k
−−→
M
B
+
(
1
−
k
)
−−→
M
C
=
→
0
, k ∈ R
cho tam giác ABC và 2 điểm M,N sao cho MA→+MB→=0, 2NA→+NC→=0. gọi I là trung điểm MN. Điểm D thỏa mãn hệ thức DB→=kDC→(k≠1).Biết ba điểm A,I,D thẳng hàng .tìm k
Cho hình chữ nhật ABCD và số thực k> 0. Tập hợp các điểm M thỏa mãn đẳng thức M A → + M B → + M C → + M D → = k
A. một đoạn thẳng.
B. một đường thẳng
C. một đường tròn.
D. một điểm
Gọi I là tâm của hình chữ nhật ABCD ta có 2 M I → = M A → + M C → 2 M I → = M B → + M D → , ∀ M .
Do đó :
M A → + M B → + M C → + M D → = k ⇔ ( M A → + M C → ) + ( M B → + M D → ) = k ⇔ 2 M I → + 2 M I → = k ⇔ 4 M I → = k ⇔ M I → = k 4 . ( * )
Vì I là điểm cố định nên tập hợp các điểm M thỏa mãn đẳng thức (*) là đường tròn tâm I bán kính R = k 4 .
Chọn C.
Cho hình chữ nhật ABCD và số thực k >0. Tập hợp các điểm M thỏa mãn đẳng thức M A → + M B → + M C → + M D → = k là
A. một đoạn thẳng.
B. một đường thẳng.
C. một đường tròn.
D. một điểm.
Cho 2 điểm A (2; 0), B(1; 2). Tập hợp điểm N thỏa mãn NA = 2NB là đường tròn (C) có tâm I (a; b) bán kính R. Giá trị của a + b + R^2 thuộc khoảng nào?
Gọi \(N\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AN}=\left(x-2;y\right)\\\overrightarrow{BN}=\left(x-1;y-2\right)\end{matrix}\right.\)
\(NA=2NB\Leftrightarrow\sqrt{\left(x-2\right)^2+y^2}=2\sqrt{\left(x-1\right)^2+\left(y-2\right)^2}\)
\(\Leftrightarrow x^2-4x+4+y^2=4\left[x^2-2x+1+y^2-4y+4\right]\)
\(\Leftrightarrow3x^2+3y^2-4x-16y+16=0\)
\(\Leftrightarrow x^2+y^2-\frac{4}{3}x-\frac{16}{3}y+\frac{16}{3}=0\)
\(\Leftrightarrow\left(x-\frac{2}{3}\right)^2+\left(y-\frac{8}{3}\right)^2=\frac{20}{9}\)
\(\Rightarrow a+b+R^2=\frac{2}{3}+\frac{8}{3}+\frac{20}{9}=\frac{50}{9}\)
Câu 1: Cho 2 điểm A,B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|2.vectoMA+vectoMB\right|=\left|vectoMA+2.vectoMB\right|\)là:
A. đường trung trực của đoạn AB
B. đường tròn đường kính AB
C. đường trung trực đoạn thẳng IA
D. đường tròn tâm A, bán kính AB
Câu 2: cho tam giác ABC đều cạnh a. Biết rằng tập hợp các điểm M thỏa mãn đẳng thức \(\left|3.vectoMA+3.vectoMB+4.vectoMC\right|=\left|vectoMB-vectoMA\right|\)là đường tròn cố định có bán kính R. Tính bán kính R theo a.
A. R = a/3
B. R = a/9
C. R = a/2
D. R = a/6
Câu 3: Cho hình chữ nhật ABCD và số thực K>0. Tập hợp các điểm M thỏa mãn đẳng thức \(\left|vectoMA+vectoMB+vectoMC+vectoMD\right|=k\)là:
A. một đoạn thẳng
B. một đường thẳng
C. một đường tròn
D. một điểm
Câu 4:Cho tam giác ABC. Có bao nhiêu điểm M thỏa mãn \(\left|vectoMA+vectoMB+vectoMC\right|=3\)?
A.1
B.2
C.3
D. vô số
Cho pt: x^2 -2(m-1)x +m^2 -4m +3 a) Tìm m để pt có 1 nghiệm là 5,tìm nghiệm còn lại b) Tìm hệ thức liên hệ giữa các nghiệm k phụ thuộc vào m c) Tìm để pt có 2 nghiệm x1 x2 thỏa mãn x1 -2x2 =1
a: Thay x=5 vào pt, ta được:
5^2-2(m-1)*5+m^2-4m+3=0
=>m^2-4m+3+25-10m+10=0
=>m^2-14m+38=0
=>(m-7)^2=11
=>\(m=\pm\sqrt{11}+7\)
b: x1+x2=2m-2
x1*x2=m^2-4m+3
(x1+x2)^2-4x1x2
=4m^2-8m+4-4m^2+4m-6
=-4m-2
(x1+x2)^2-4x1x2+2(x1+x2)
=-4m-2+4m-4=-6
cho hai điểm cố định A và B. Tìm tập hợp các điểm M thỏa mãn : \(MA^2+MB^2=k^2\), với k là độ dài không đổi cho trước
Bài 1) Cho hai số dương x,y thỏa mãn hệ thức: \(x^2+y^2=k^2\)(k không đổi, k>0).Tìm GTLN của x+y
Bài 2) Cho góc nhọn xOy và điểm M nằm trong góc nhọn ấy.Dựng đường thẳng qua M cắt Ox tại A và cắt Oy tại B sao cho tam giác OAB có chu vi nhỏ nhất
Bài 3) Tam giác ABC có ba góc nhọn. Biết BC=a,AC=b,AB=c và M là một điểm trong tam giác. Gọi P,Q,R lần lượt là hình chiếu của M trên cạnh BC,CA và AB. Tìm GTNN của \(AR^2+BP^2+CQ^2\)chỉ rõ vị trí của điểm M
Bài 1: Cho phương trình \(^{x^2-2\left(k-1\right)x+2k-5=0}\)
a) Giải phương trình với k = 1
b) Tìm k để phương trình có 2 nghiệm x1, x2 thỏa mãn hệ thức \(\left|x_1\right|-\left|x_2\right|=\sqrt{14}\)
Bài 2: Cho phương trình \(x^2-5x+m=0\)(m là tham số)
a) Giải phương trình với m = 4
b) Tìm m để phương trình có 2 nghiệm phân biệt x1, x2 thỏa mãn \(\left|x_1-x_2\right|=3\)