Cho tam giác ABC và hai điểm M,N,P thỏa mãn | vec MA +2 vec MB = vec 0 và 4NB + NC =0| - vec PC +2 vec PA = vec 0 Chứng minh rằng M,N,P thẳng hàng.
Cho tam giác ABC đường trung tuyến AD. Gọi I là trung điểm AD, điểm K nằm trên cạnh AC sao cho \(\overrightarrow{KC}=-2\overrightarrow{KA}\)
a) Hãy phân tích vectơ BI, BK theo vectơ BA, BC
b) Chứng minh B,I,K thẳng hàng
c) Nêu các xác định điểm M sao cho \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
Nhanh nha gấp lắm
Cho tam giác ABC có trung tuyến BM. Gọi I là trung điểm của BM, N là một điểm trên cạnh BC sao cho BC = 3BN. Chứng minh rằng ba điểm A, I, N thẳng hàng
Cho tam giác ABC có AM là trung tuyến, gọi H là trung điểm AM và K thuộc AC sao cho AC=3 AM a)Phân tích BK, BH theo 2 vecto BA, BC b)Chứng minh 3 điểm B,H,K thẳng hàng
Cho tam giác ABC . D thuộc tia đối của tia BA sao cho BA = BD . Gọi M là trung điểm BC . Tia DM cắt AC tại K . Gọi N là trung điểm AK a) BN = DK/2 b) AK = 2KC (giúp em với )
cho tam giác ABC gọi D,I là các điểm đc xác định bởi
3DB - 2DC= 0
IA + 3IB -2IC = 0
a, biểu diễn AD theo hai vector AB và AC
b, chứng minh ba điểm I, A, D thẳng hàng
Bài 14. Cho tam giác ABC. Trên cạnh AB lấy điểm E sao cho EB = 2EA; M là điểm thỏa mãn vecto ME + 3vecto MC =vecto 0. Biểu diễn vectơ MA qua các vectơ MB , MC .
Cho tam giác ABC. Trên các cạnh AB và BC lấy các điểm E, F sao cho AE = 3/4 AB ; BF = 2/5 BC. Gọi H, I lần lượt là trung điểm AC và EH. Chứng minh ba điểm A, I, F thẳng hàng.
Cho tam giác ABC
a) Tìm điểm K sao cho \(\overrightarrow{KA}+2\overrightarrow{KB}=\overrightarrow{CB}\)
b) Tìm điểm M sao cho \(\overrightarrow{MA}+\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\)