Cho tam giác ABC đường trung tuyến AD. Gọi I là trung điểm AD, điểm K nằm trên cạnh AC sao cho \(\overrightarrow{KC}=-2\overrightarrow{KA}\)
a) Hãy phân tích vectơ BI, BK theo vectơ BA, BC
b) Chứng minh B,I,K thẳng hàng
c) Nêu các xác định điểm M sao cho \(27\overrightarrow{MA}-8\overrightarrow{MB}=2015\overrightarrow{MC}\)
Nhanh nha gấp lắm
Cho tam giác ABC. Trên các cạnh AB và BC lấy các điểm E, F sao cho AE = 3/4 AB ; BF = 2/5 BC. Gọi H, I lần lượt là trung điểm AC và EH. Chứng minh ba điểm A, I, F thẳng hàng.
Bài 3: Cho tam giác ABC. Gọi M là trung điểm của AB, D là trung điểm của BC, N là điểm thuộc AC sao cho vecto CN =2 vecto NA . K là trung điểm của MN. Chứng minh:
a) Vecto AK=1/4 vectoAB+1/6 vecto AC
b)
vecto KD=1/4 vecto AB+1/3 vecto AC
Cho tam giác ABC lấy điểm M trên cạnh BC sao cho BM = 3MC. Gọi I là trung điểm của BC va G la trọng tâm của tam giac ABC. Tính vecto AM theo vecto AG va vecto BC
Cho tam giác ABC có trung tuyến BM. Gọi I là trung điểm của BM, N là một điểm trên cạnh BC sao cho BC = 3BN. Chứng minh rằng ba điểm A, I, N thẳng hàng
Cho tam giác ABC . D thuộc tia đối của tia BA sao cho BA = BD . Gọi M là trung điểm BC . Tia DM cắt AC tại K . Gọi N là trung điểm AK a) BN = DK/2 b) AK = 2KC (giúp em với )
Bài 12. Cho tam giác ABC. M là điểm thuộc cạnh BC sao cho 3BM = 7CM. Biểu diễn vecto AM qua vecto AB và AC .
.
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của BC, CA và AB. Chứng minh các vecto AM+BN+CE=0
Cho tam giác ABC. Gọi M, N, E lần lượt là trung điểm của AB, AC và BC. Gọi I là trung điểm của MN. Đặt vecto u = vecto AB , vecto v = vecto AC
a) Hãy phân tích vecto AI theo hai vecto u và v
b) Hãy phân tích vecto EI theo hai vecto u và v.