3n-7⋮2n-3
CMR 3n+3+3n+1+2n+3+2n+2 chia hết cho 7
Bạn xem lại đề. Thay $n=1$ thì biểu thức không chia hết cho 7 nhé.
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)
Tìm ước chung
a,n+1 và 2n+5
b,n+3 và 2n+5
c,2n+1 và 3n+7
d,2n+5 và 3n+7
e,5n+6 và 8n+7
a/ước chung là 3
b/ước chung là 1
mk chỉ làm mẫu 2 câu thôi còn bạn tự làm đi
Tính :6/ lim\(\dfrac{-n^2+2n+1}{\sqrt{3n^4+2}}\)
7/ lim \(\dfrac{\sqrt{n^3-2n+5}}{3+5n}\)
10/ lim\(\dfrac{1+3+5+...+\left(2n+1\right)}{3n^3+4}\)
Tìm n thuộc N:
1) 3n + 5 chia hết cho n - 4
2) 6n + 7 chia hết cho 3n - 1
3) 4n + 8 chia hết cho 3n - 2
4) 2n - 7 chia hết cho n + 2
5) 3n - 4 chia hết cho 3 - n
6) 2n - 5 chia hết cho n + 1
7) 3n - 7 chia hết cho 2n + 3
8) n - 5 chia hết cho n - 1
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
a) 12/3n-1 b) 2n+3/7 c) 2n+5/n-3
3n+7 chia hết 2n-11
5n-1chia hết 2n-7
7n+3 chia hết 2n+5
cmr 2 số sau là số nguyên tố
a]2n+5 và 3n+7
b]2n+3 và 3n+4
a)gọi UCLN(2n+5, 3n+7) là d
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1)
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2)
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau(đpcm)
Cho n thuộc N* . CMR:
a) (2n+3; 3n+4) = 1
b) (2n+1; 2n+3) =1
c) (2n+5; 3n+7) =1
Giups mình nha. bạn nào nhanh sẽ dc like nha