Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGUYỄN DOÃN ANH THÁI
Xem chi tiết
Thắng Nguyễn
27 tháng 10 2016 lúc 22:11

Xét Bất đẳng thức phụ:

\(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow a^2b+ab^2\le a^3+b^3\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)

Tương tự ta có:

\(\frac{5a^3-b^3}{ab+3a^2}\le2a-c\);\(\frac{5c^3-a^3}{ac+3c^2}\le2c-b\)

Cộng lại theo vế ta có:

\(\frac{5a^3-b^3}{ab+3a^2}+\frac{5b^3-c^3}{bc+3b^2}+\frac{5c^3-a^3}{ac+3c^2}\le2b-a+2a-c+2c-b=a+b+c=2007\)

Đpcm

Nguyễn Phương Linh
20 tháng 4 2020 lúc 8:21

pịa pịa pịa 

Khách vãng lai đã xóa
Mầu Danh Minh Khoa
20 tháng 4 2020 lúc 9:05

l405ttol9to5l9g

Khách vãng lai đã xóa
Nezuko Kamado
Xem chi tiết
Nezuko Kamado
31 tháng 10 2021 lúc 15:48

 Mk săpp thi rồi nên hơi nhiều bài mong mn giúp mk !!!

Nguyễn Hoàng Minh
31 tháng 10 2021 lúc 15:52

\(1,\\ a,3^{2^3}=3^8>3^6=\left(3^2\right)^3\\ b,\left(-8\right)^9=\left(-2\right)^{27}< \left(-2\right)^{25}=\left(-32\right)^5\\ c,2^{21}=8^7< 9^7=3^{14}\\ 2,\)

\(a,\) Áp dụng tcdtsbn:

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)

\(b,\) Sửa: \(\dfrac{ab}{cd}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow a=bk;c=dk\)

\(\Leftrightarrow\dfrac{ab}{cd}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2};\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2}{d^2}\\ \LeftrightarrowĐpcm\)

Lê Bùi
Xem chi tiết
Đạt Trần Tiến
12 tháng 11 2017 lúc 21:29

bạn chép sai đề ak

Cố gắng hơn nữa
Xem chi tiết
Pham Quoc Cuong
9 tháng 5 2018 lúc 13:12

 Đề bài bị trái dấu bạn nhé

CM \(\frac{5b^3-a^3}{ab+3b^2}\le2b-a\) 

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\) 

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3ab^2\) 

\(\Leftrightarrow b^3+a^3-ab^2-ba^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\)đúng với mọi a, b>0 

CMTT các hạng tử khác 

\(\Rightarrow P=\frac{5b^3-a^3}{ab+3b^3}+\frac{5c^3-b^3}{bc+3c^3}+\frac{5a^3-c^3}{ac+3a^2}\le2b-a+2c-b+2a-c=a+b+c\)

Cố gắng hơn nữa
9 tháng 5 2018 lúc 20:18

vậy đề sai rồi chứ mình giải mãi chả ra mà toàn ngược dấu nên mình tưởng mình sai 

Nguyễn Thu Trà
Xem chi tiết
Unruly Kid
1 tháng 3 2019 lúc 14:44

Ta chứng minh bổ đề sau:

\(\dfrac{5b^3-a^3}{ab+3b^2}\le2b-a\)

\(\Leftrightarrow5b^3-a^3\le\left(2b-a\right)\left(ab+3b^2\right)\)

\(\Leftrightarrow5b^3-a^3\le2ab^2+6b^3-a^2b-3b^2a\)

\(\Leftrightarrow a^3+b^3-a^2b-b^2a\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)\ge0\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)

Bất đẳng thức cuối luôn đúng, vậy ta có

\(M\le2a-b+2b-c+2c-a=a+b+c\)Chứng minh hoàn tất. Đẳng thức xảy ra khi \(a=b=c\)

Thảo Nguyễn
Xem chi tiết
Nguyen Duc Manh
15 tháng 10 2018 lúc 22:30

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Nguyen Duc Manh
17 tháng 10 2018 lúc 21:32

vãi cả loz sao lại sai ?

MOHAMET SALAS
Xem chi tiết
phan thị phương
Xem chi tiết
Tuyển Trần Thị
Xem chi tiết
alibaba nguyễn
11 tháng 11 2017 lúc 19:50

Xem kỹ lại đề nhé. Anh không nghĩ đề đúng đâu

Tuyển Trần Thị
12 tháng 11 2017 lúc 6:55

uk e sorry sửa lại đề rồi đấy 

pham trung thanh
12 tháng 11 2017 lúc 9:21

Chứng minh: \(\frac{5a^3-b^3}{ab+3b^2}\le2a-b\)

Còn lại tương tự