Cho toạ độ A (-2;1) B(3:2) C(-1;4) a) Tính diện tích tam giác ABC B) tìm toạ độ D để ADBC là hình thoi
Trong mặt phẳng toạ độ oxy cho A(-1;-2)B(3;2)C(4;1) A gpij I là trung điểm của AB tìm toạ độ của I B gọi G là trọng tâm của tam giác ABC tìm toạ độ trọng tâm
a) Ta có: I là trung điểm AB
\(\Rightarrow\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_B}{2}=\dfrac{-1+3}{2}=1\\y_I=\dfrac{y_A+y_B}{2}=\dfrac{-2+2}{2}=0\end{matrix}\right.\)
\(\Rightarrow I\left(1;0\right)\)
b) Ta có: G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{-1+3+4}{3}=2\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-2+2+1}{3}=\dfrac{1}{3}\end{matrix}\right.\)
\(\Rightarrow G\left(2;\dfrac{1}{3}\right)\)
Trong mặt phẳng toạ độ Oxy cho A(-1;3), B(2;-4), C(-5;1). Tìm toạ độ điểm M sao cho véc-tơCM = 2.véc-tơAB - 3.véc-tơAC
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{CM}=\left(x+5;y-1\right)\\\overrightarrow{AB}=\left(3;-7\right)\\\overrightarrow{AC}=\left(-4;-2\right)\end{matrix}\right.\) \(\Rightarrow2\overrightarrow{AB}-3\overrightarrow{AC}=\left(18;-8\right)\)
\(\overrightarrow{CM}=2\overrightarrow{AB}-3\overrightarrow{AC}\Leftrightarrow\left\{{}\begin{matrix}x+5=18\\y-1=-8\end{matrix}\right.\) \(\Rightarrow M\left(13;-7\right)\)
Mặt phẳng toạ độ Oxy cho A(-4;-3);B(2;3/2).Vì sao 3 điểm A;B và gốc toạ độ thẳng hàng?
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-2;0),B(-2;4;-2). Toạ độ trung điểm của đoạn thẳng AB là
A. (0;2;-2).
B. (0;4;-4).
C. (0;1;-1).
D. (-4;6;-2).
Trong mặt phẳng toạ độ Oxy, cho 2 điểm A(-2,4) và B(8,4). Tìm toạ độ điểm C thuộc trục hoành sao cho tam giác ABC vuông tại C
Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)
Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)
\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)
\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)
Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)
1. Trong mặt phẳng với hệ toạ độ Oxy, viết phương trình đường thẳng △ song song với đường thẳng d: 2x-y+2015=0 và cắt hai trục toạ độ tại M và N sao cho MN=3√5
2.Trong mặt phẳng với hệ toạ độ Oxy, cho 2 điểm A(1;2) ; B(4;3). Tìm toạ độ điểm M sao cho ∠MAB=135 độ và khoảng cách từ M đến đường thẳng AB bằng √10/2
Câu 1:
Do \(\Delta\) song song d nên nhận \(\left(2;-1\right)\) là 1 vtpt
Phương trình \(\Delta\) có dạng: \(2x-y+c=0\) (\(c\ne2015\))
Tọa độ giao điểm của \(\Delta\) và Ox: \(\left\{{}\begin{matrix}y=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{c}{2};0\right)\)
Tọa độ giao điểm \(\Delta\) và Oy: \(\left\{{}\begin{matrix}x=0\\2x-y+c=0\end{matrix}\right.\) \(\Rightarrow N\left(0;c\right)\)
\(\overrightarrow{MN}=\left(\frac{c}{2};c\right)\Rightarrow\frac{c^2}{4}+c^2=45\Leftrightarrow c^2=36\Rightarrow\left[{}\begin{matrix}c=6\\c=-6\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}2x-y+6=0\\2x-y-6=0\end{matrix}\right.\)
Bài 2:
Bạn tham khảo ở đây:
Câu hỏi của tôn hiểu phương - Toán lớp 10 | Học trực tuyến
Cho tam giác ABC có A(2;1), B(-1;2), C(3;4)
a) Tìm toạ độ vecto AB và tính độ dài đoạn thẳng AB.
b) Tìm toạ độ điểm D sao cho \(3\overrightarrow{AB}-2\overrightarrow{BD}+\overrightarrow{CD}=0\)
a) \(\overrightarrow{AB}\)=(-1-2;2-1)
<=>\(\overrightarrow{AB}\)(-3;1)
b) ta có:
D(x;y)\(\left\{{}\begin{matrix}3\left(-3\right)-2\left(x-\left(-1\right)\right)+x-3=0\\3.1-2\left(y-2\right)+y-4=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}-9-2x-2+x-3=0\\3-2y+4+y-4=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}-x-14=0\\-y+3=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=-14\\y=3\end{matrix}\right.\)
vậy D(-14;3)
Trên mặt phẳng toạ độ Oxy cho 3 điểm. điểm A có toạ độ 1;4, điểm B có toạ độ -3;-4, điểm C có toạ độ 1;0. Tính diện tích của tam giác ABC
Ta có: \(M\left( {0;y} \right)\)
Lại có: \(\overrightarrow {MA} \left( {1;1 - y} \right),\overrightarrow {MB} \left( {2; - 2 - y} \right)\)
Theo yêu cầu bài toán, suy ra: \({1^2} + {\left( {1 - y} \right)^2} = {2^2} + {\left( {2 + y} \right)^2} \Leftrightarrow 1 + 1 - 2y + {y^2} = 4 + 4 + 4y + {y^2} \Leftrightarrow y = - 1\)
Nên \(M\left( {0; - 1} \right)\)
Vậy \(a = 0,b = - 1 \Rightarrow a + b = 0 + \left( { - 1} \right) = - 1\)