tìm m để pt:(2m-2).sin2x+(m+2).cos2x=3m
Tìm tham số m để hàm số sau xác định trên R
1/
3/
Tìm tham số m để hàm số sau xác định trên R
1/
2/
3/
Để hàm số y xác định trên R, ta cần xác định điều kiện để biểu thức trong dấu căn không âm: 1/ y = √(cos^2x + cosx - 2m + 1) Điều kiện: cos^2x + cosx - 2m + 1 ≥ 0 - Để giải bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x + cosx - 2m + 1 không có nghiệm trong khoảng [-∞ , +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = 1 - 4(1)(-2m + 1) = 8m - 3 - Để f(x) không có nghiệm, ta cần Δ < 0: 8m - 3 < 0 => m < 3/8 Do đó, hàm số y = √(cos^2x + cosx - 2m + 1) xác định trên R khi m < 3/8. 2/ y = √(cos^2x - 2cosx + m) Điều kiện: cos^2x - 2cosx + m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x - 2cosx + m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) ) - Để f(x) không có nghiệm, ta cần Δ < 0: 1 - m < 0 => m > 1 Do đó, hàm số y = √(cos^2x - 2cosx + m) xác định trên R khi m > 1. 3/ y = √(sin^4x + cos^4x - sin^2x - m) Điều kiện: sin^4x + cos^4x - sin^2x - m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 4: f(x) = sin^4x + cos^4x - sin^2x - m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-1)^2 - 4(1)(-m) = 1 + 4m - Để f(x) ) không có nghiệm, ta cần Δ < 0: 4m < -1 => m < -1/4 Do đó, hàm số y = √(sin^4x + cos^4x - sin^2x - m) xác định trên R khi m < -1/4.
tim m de pt co nghiem
1/ (m-3)sin2x=2
2/ (2m2 +m-2)cos2x=m2(m+cos2x)+mcos2x
giai nhanh giup nha mn mk dag can a
Tìm m để hàm số y = 2 sin 2 x + 4 sinx cosx - ( 3 + 2 m ) cos 2 x + 2 xác định với mọi x
A. m = 1
B. m > 1
C. m > 2
D. m < -1
Đáp án D
Hàm số xác định với mọi x
⇔ 2sin2x + 4sinx cosx – (3 + 2m)cos2x + 2 ≤ 0 ∀x ∈ R (1)
cos x = 0 => (1) đúng
cos x ≠ 0 khi đó ta có: (1) ⇔ 2tan2x + 4tanx – (3 + 2m) + 2(1 + tan2x) ≥ 0
⇔ 4tan2x + 4tanx ≥ 1 + 2m ∀x ∈ R
⇔ (2tanx + 1)2 ≥ 2 + 2m ∀x ∈ R ⇔ 2 + 2m ≤ 0 ⇔ m ≤ -1
cho pt; 1-sin2x+cos2x-2mcosx=0
tìm m để pt có 2 nghiệm thuộc (-π;π)
Tìm tham số m để hàm số sau xác định trên R
1/ \(y=\sqrt{cos^2x+cosx-2m+1}\)
2/ \(y=\sqrt{cos2x-2cosx+m}\)
3/ \(y=\sqrt{sin^4x+cos^4x-sin2x-m}\)
1/ Để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) + cos(x ) - 2m + 1 > 0 Để giải phương trình này, ta sử dụng một số phép biến đổi: cos^2(x) + cos(x) - 2m + 1 = (cos(x) + 2)(cos(x) - m + 1) Điều kiện để biểu thức trên dương là: cos(x) + 2 > 0 và cos(x) - m + 1 > 0 Với cos(x) + 2 > 0, ta có -2 < cos( x) < 0 Với cos(x) - m + 1 > 0, ta có m - 1 < cos(x) < 1 Tổng Hàm, để hàm số y = √cos^2(x) + cos(x) - 2m + 1 xác định trên R, tham số m phải đáp ứng điều kiện -2 < cos(x) < 0 và m - 1 < cos(x) < 1. 2/ Để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: cos^2(x) - 2cos(x) + m > 0 Đây là một phương trình bậc hai theo cos(x). Để giải phương trình này, ta sử dụng công thức delta: Δ = b^2 - 4ac Ở đây, a = 1, b = -2, c = m. Ta có: Δ = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) Để phương trình có nghiệm thì Δ > 0. Tức là 1 - m > 0 hay m < 1. Tổng quát, để hàm số y = √cos^2(x) - 2cos(x) + m xác định trên R, tham số m phải đáp ứng m < 1. 3/ Để hàm số y = √sin^ 4 (x) + cos^4(x) - sin^2(x) - m xác định trên R, ta cần điều kiện để biểu thức trong căn dương: sin^4(x) + cos^4(x) - sin ^2(x) - m > 0 Đây cũng là một phương trình bậc hai theo sin(x). Ta sử dụng công thức delta as on, with a = 1, b = -1, c = -m. Δ = (-1)^2 - 4(1)(-m) = 1 + 4m = 4m + 1 Để phương trình có nghiệm thì Δ > 0. Tức là m > -1/4. Tổng quát, để hàm số y = √sin^4(x) + cos^4(x) - sin^2(x) - m xác định trên R, tham số m phải thỏa mãn m > -1/4.
1, cho phương trình \(sin2x-\left(2m+\sqrt{2}\right)\left(sinx+cosx\right)+2m\sqrt{2}+1=0\) tìm các giá trị m để phương trình có đúng 2 nghiệm \(x\in\left(0;\dfrac{5\Pi}{4}\right)\)
2,tìm tất cả các giá trị thực của tham số m để phương trình \(cos2x+\left(2m+1\right)sinx-m-1=0\) có đúng 2 nghiệm thuộc khoảng \(\left(\dfrac{\Pi}{2};\dfrac{3\Pi}{2}\right)\)
3, cho phương trình \(cos^2x-2mcosx+6m-9=0\) tìm các giá trị m để phương trình có nghiệm thuộc khoảng \(\left(-\dfrac{\Pi}{2};\dfrac{\Pi}{2}\right)\)
Cho phương trình cos2x-(2m+1)cosx+m+1=0
a, GPT với m=3/2
b, Tìm m để pt có nghiệm thuộc [pi/2;3pi/2]
Cho phương trình cos2x-(2m+1)cosx+m+1=0
a, GPT với m=3/2
b, Tìm m để pt có nghiệm thuộc [pi/2;3pi/2]