bài 1 so sánh
a)125^5và25^7
b)3^54 và 2^81
c)10^30 và 2^100
d)5^40 và 620^10
giải thích
So sánh
a) 3^200 và 2^300
b) 125^5 và 25^7
c) 9^20 và 27^13
d) 3^54 và 2^84
e) 10^30 và 2^100
f) 5^40 và 620 ^ 10
giúp mk làm nhanh nhé, mk tik cho^_^
a)dễ thấy :
3^200 = (3^2)^100=9^100
2^300=(2^3)^100=8^100
nên.......
b)tương tự :
125^5=5^15
25^7=5^14
=> ......
c) 9^20 = 3^40
27^13=3^39
=>..........
các câu còn lại tương tự như 3 câu trên nhé ..... ^^
__cho_mình_nha_chúc_bạn_học _giỏi__
a, 3^200= (3^2)^100= 9^100
2^300= (2^3)^100= 8^100
Vì 9^100>8^100 nên 3^200>2^300
b, 125^5= (5^3)^5= 5^15
25^7= (5^2)^7= 5^14
Vì 5^15>5^14 nên 125^5>25^7
so sanh
1/ 2^100 và 1024^8
2/ 5^40 và 620^10
3/ 12^44 và 9^22
4/ 25^45 và 125^30
Bài 1: so sánh
a) 10^30 và 2^100 b)5^40 và 620^10 c) 8^25 và 16^19
a) \(10^{30}=2^{30}.5^{30}=2^{30}.\left(5^3\right)^{10}=2^{30}.125^{10}\)
\(2^{100}=2^{30}.2^{70}=2^{30}.\left(2^7\right)^{10}=2^{30}.128^{10}\)
mà \(125^{10}< 128^{10}\)
\(\Rightarrow10^{30}< 2^{100}\)
b) \(5^{40}=\left(5^4\right)^{10}=625^{10}>620^{10}\)
\(5^{40}>620^{10}\)
c) \(8^{25}=\left(2^3\right)^{75}=2^{75}\)
\(16^{19}=\left(2^4\right)^{19}=2^{76}>2^{75}\)
\(\Rightarrow16^{19}>8^{25}\)
a,1030 và 2100
1030=(103)10=100010
2100=(210)10=102410
Vì 100010<102410 nên 1030<2100.
b,540 và 62010
540=(54)10=62510>62010
=>540>62010.
c,825 và 1619
Nhân 825 và 1619 với 4 , ta được
3225 và 6419
3225=(325)5=335544325
6419<6420=(644)5=167772165
Vì 335544325>167772165 nên 825>1619
Bài 1: So sánh
a) \(-2^{30}\) và \(-3^{30}\)
b) \(35^5\) và \(6^{10}\)
Bài 2: Tính giá trị biểu thức
a) \(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
b) \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(1,\\ a,2< 3\Rightarrow2^{30}< 3^{30}\Rightarrow-2^{30}>-3^{30}\\ b,6^{10}=6^{2\cdot5}=\left(6^2\right)^5=36^5>35^5\left(36>35\right)\)
\(2,\\ a,\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}=\dfrac{3^{10}\cdot5^5\cdot3^5}{5^6\cdot3^{14}}=\dfrac{3}{5}\\ b,\left(8x-1\right)^{2x+1}=5^{2x+1}\\ \Leftrightarrow8x-1=5\\ \Leftrightarrow x=\dfrac{3}{4}\)
Bài 2:
a: Ta có: \(\dfrac{\left(-3\right)^{10}\cdot15^5}{25^3\cdot\left(-9\right)^7}\)
\(=\dfrac{-3^{10}\cdot3^5\cdot5^5}{5^6\cdot3^{14}}\)
\(=-\dfrac{3}{5}\)
b: Ta có: \(\left(8x-1\right)^{2x+1}=5^{2x+1}\)
\(\Leftrightarrow8x-1=5\)
\(\Leftrightarrow8x=6\)
hay \(x=\dfrac{3}{4}\)
Bài 1:
a: \(-2^{30}=-8^{10}\)
\(-3^{30}=-27^{10}\)
mà 8<27
nên \(-2^{30}>-3^{30}\)
b: \(35^5=35^5\)
\(6^{10}=36^5\)
mà 35<36
nên \(35^5< 6^{10}\)
So sánh :
a) 3200 và 2300
b) 1255 và 257
c)920 và 2713
d)354 và 281
e)1030 và2 210
g)540 và 62010
Nhớ giải cả cách làm hộ mình nhé ! Mình sẽ tick cho !
a, Ta có:
3200 = ( 32) 100 = 9100
2300 = (23)100 = 8100
Nhận xét: 9100 > 8100
=) 3200 > 2300
b,
Ta có:
1255 = (53)5 = 515
257 = (52)7 = 514
Nhận xét: 515 > 514
=) 1255 > 257
c, Ta có
920 = (32)20 = 340
2713= (33)13 = 339
Nhận xét: 340 > 339
=) 920 > 2713
So sánh
3200 và 2300
354 và 281
1030 và 2100
540 và 62010
\(3^{200}=\left(3^2\right)^{100}=9^{100};2^{300}=\left(2^3\right)^{100}=8^{100}\)
\(\rightarrow3^{200}>2^{300}\)
\(3^{54}=\left(3^2\right)^{27}=9^{27};2^{81}=\left(2^3\right)^{27}=8^{27}\)
\(\rightarrow3^{54}>2^{81}\)
bài 1 so sánh
a)125^5và25^7
b)3^54 và 2^81
c)10^30 và 2^100
d)5^40 và 620^10
giải thích
\(125^5=\left(5^3\right)^5=5^{3\cdot5}=5^{15}\\ 25^7=\left(5^2\right)^7=5^{2\cdot7}=5^{14}\\ 5^{15}>5^{14}\Rightarrow125^5>25^7\)
Vậy ...
\(3^{54}=3^{2\cdot27}=\left(3^2\right)^{27}=9^{27}\\ 2^{81}=2^{3\cdot27}=\left(2^3\right)^{27}=8^{27}\\ 9>8\Rightarrow9^{27}>8^{27}\Rightarrow3^{54}>2^{81}\)
Vậy ...
\(10^{30}=10^{3\cdot10}=\left(10^3\right)^{10}=1000^{10}\\ 2^{100}=2^{10\cdot10}=\left(2^{10}\right)^{10}=1024^{10}\\ 1024>1000\Rightarrow1024^{10}>1000^{10}\Rightarrow2^{100}>10^{30}\)
Vậy ...
\(5^{40}=5^{4\cdot10}=\left(5^4\right)^{10}=625^{10}\\ 620< 625\Rightarrow620^{10}< 625^{10}\Rightarrow620^{10}< 5^{40}\)
Vậy ...
Bài 1: Chứng tỏ rằng các tổng, hiệu sau không chia hết cho 10:
a) 98.96.94.92-93.95.97
b) 405^n+2^405+2m^2 (m,n thuộc N; n khác 0 )
Bài 2: So sánh các lũy thừa sau:
a) 2^100 và 1024^8
b) 5^40 và 620^10
c) 222^333 và 333^222
d)12^44 và 9^22
e) 25^45 và 125^30
f) 5^400 và 10^200
g) 12^40 và 2^160
h) 5^300 và 3^453
k) 24^50 và 36^36
So sánh
a, 1255 và 257
B,1030 và 2100
C,902 và 2713
D,540 và 62010
\(125^5\)và \(25^7\)
Ta có:
\(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
Vì \(5^{15}>5^{14}\)
\(\Rightarrow125^5>25^7\)
a, \(125^5=\left(5^3\right)^5=5^{15}\)
\(25^7=\left(5^2\right)^7=5^{14}\)
mà \(5^{15}>5^{14}\)\(\Rightarrow\)\(125^5>25^7\)
b, ta có : \(10^{30}=\left(10^3\right)^{10}=1000^{10}\)
\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)
mà \(1000^{10}< 1024^{10}\)nên \(10^{30}< 2^{100}\)
a)Ta có: 125^5=(5^3)^5=5^15
25^7=(5^2)^7=5^14
Vì 15>14 nên 5^15>5^14
Vậy 125^5>25^7
b) Ta có : 10^30=(10^3)^10=1000^10
2^100=(2^10)^10=1024^10
Vì 1000<1024 nên 1000^10<1024^10
vậy 10^30>2^100
Phần còn lại mik nghĩ là dễ nên bạn tự làm nha