Phân tích đa thức thành nhân tử:
\(a,x^2-y^2+10yz-25z^2\)
\(b,a^2-x^2+4ab+4xy+b^2-4y^2\)
Bài 1. Phân tích đa thức 2x – 4y thành nhân tử được kết quả là:
A.2(x – 2y) B. 2( x + y) C. 4(2x – y) D. 2(x + 2y)
Bài 2. Phân tích đa thức 4x2 – 4xy thành nhân tử được kết quả là:
A.4(x2 – xy) B. x(4x – 4y) C. 4x(x – y) D. 4xy(x – y)
Bài 3. Tại x = 99 giá trị biểu thức x2 + x là:
A.990 B. 9900 C. 9100 D. 99000
Bài 4. Các giá trị của x thỏa mãn biểu thức x2 – 12x = 0 là:
A.x = 0 B. x = 12 C. x = 0 và x = 12 D. x = 11
Giúp mik với mik cảm ơn
Phân tích đa thức sau thành nhân tử
a)x^2-4xy+4y^2-4
b)16-x^2+2xy-y^2
a)x^2-4xy+4y^2-4
=(x2-4xy+4y2)-4
=(x-2y)2-4
=(x-2y+2)(x-2y-2)
b)16-x^2+2xy-y^2
=16-(x2-2xy+y2)
=16-(x-y)2
=[4-(x-y)][4+(x-y)]
=(4-x+y)(4+x-y)
Phân tích đa thức thành nhân tử:1)35x(y-3)-14y(8-y) 2)4x^2-y^2+10-25. 3)9x^2-y^2+10yz-25z^2, 4)x^2-y^2+z^2-t^2-2xz+2yt 5)(x-y+4)^2-(2x+3y-1)^2
PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ
a)\((x^2+4)-16x^2 \)
b)\(1-2y+y^2-x^2+4xz-4z^2\)
c)\(4x^2-4xy+y^2-25z^2+10z-1\)
a,x^2+4-16x^2
-15x^2+4
-(15x^2-4)
b,(1-2y+y^2)-(x^2-4xz+4z^2)
(1-y)^2-(x-z)^2
(1-y+x-z)(1-y-x+z)
c,(4x^2-4xy+y^2)-(25z^2-10z+1)
(2x+y)^2-(5z-1)^2
(2x+y+5z-1)(2x+y-5z+1)
Bài 1. Phân tích các đa thức sau thành nhân tử a) y - 9 - x + 6x b) 25 - 4x? - 4xy - y c) x - xz + 4y - 2yz + 4xy d) 3x + 6xy - 48z + 3y? e) x - z + 4y - 4t - 4xy + 4zt f) +2x'y+xy-16x Bài 2. Tìm x biết a) 3x(-3)-4x+12 -0 b) -5x=0 c) (a-2 -(x+2 =0 d) -9-4x+3)=0 Bài 3. Tính nhanh giá trị biểu thức a) A= x - 4z? - 2xy + y với x = -16; y = -6; z = 45 b) B = x - y + 2y-1 với x = 75; y = 26. c) C = 2x + xy - x'y - 2y với x= y =
giúp e làm vs ạ em đang cần gấp
bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được
Phân tích mỗi đa thức sau thành nhân tử
a)x^3-2x^2y+xy^2+xy
b)x^3+4x^2y+4xy^2-9x
c)x^3-y^3+x-y
d)4x^2-4xy+2x-y+y^2
e)9x^2-3x+2y-4y^2
f)3x^2-6xy+3y^2-5x+5y
a) Xem lại đề
b) x³ - 4x²y + 4xy² - 9x
= x(x² - 4xy + 4y² - 9)
= x[(x² - 4xy + 4y² - 3²]
= x[(x - 2y)² - 3²]
= x(x - 2y - 3)(x - 2y + 3)
c) x³ - y³ + x - y
= (x³ - y³) + (x - y)
= (x - y)(x² + xy + y²) + (x - y)
= (x - y)(x² + xy + y² + 1)
d) 4x² - 4xy + 2x - y + y²
= (4x² - 4xy + y²) + (2x - y)
= (2x - y)² + (2x - y)
= (2x - y)(2x - y + 1)
e) 9x² - 3x + 2y - 4y²
= (9x² - 4y²) - (3x - 2y)
= (3x - 2y)(3x + 2y) - (3x - 2y)
= (3x - 2y)(3x + 2y - 1)
f) 3x² - 6xy + 3y² - 5x + 5y
= (3x² - 6xy + 3y²) - (5x - 5y)
= 3(x² - 2xy + y²) - 5(x - y)
= 3(x - y)² - 5(x - y)
= (x - y)[(3(x - y) - 5]
= (x - y)(3x - 3y - 5)
phân tích thành đa thức nhân tử
a, (x^2 + 2x)^2 + 9x^2 + 18x + 20
b, x^3 + 2x - 3
c, x^2 - 4xy + 4y^2 - 2x + 4y - 35
a. \(\left(x^2+2x\right)^2+9x^2+18x+20=x^4+4x^3+13x^2+18x+20\)
\(=x^4+2x^3+2x^3+5x^2+4x^2+4x^2+8x+10x+20\)
\(=x^2\left(x^2+2x+5\right)+2x\left(x^2+2x+5\right)+4\left(x^2+2x+5\right)=\left(x^2+2x+5\right)\left(x^2+2x+4\right)\)
Lưu ý: có thể dùng phương pháp đồng nhất hệ số dưới dạng \(\left(x^2+ax+5\right)\left(x^2+bx+4\right)\) khi thực xong bước 1
b. \(x^3+2x-3=x^3+x^2-x^2+3x-x-3=x\left(x^2+x+3\right)-\left(x^2+x+3\right)=\left(x-1\right)\left(x^2+x+3\right)\)
c. \(x^2-4xy+4y^2-2x+4y-35=\left(x-2y\right)^2-2\left(x-2y\right)+1-36=\left(x-2y-1\right)^2-6^2\)
\(=\left(x-2y-1-6\right)\left(x-2y-1+6\right)=\left(x-2y-7\right)\left(x-2y+5\right)\)
Phân tích đa thức Thành nhân tử
a) x2 - y2 - 2x - 2y
b) xy + y2
c) x2 + 4xy + 4y2 - 25
a) \(\left(x^2-2x+1\right)-\left(y^2+2y+1\right)\)
\(=\left(x-1\right)^2-\left(y+1\right)^2\)
\(=\left(x-y-2\right)\left(x+y\right)\)
b) xy+y2 = y ( x + y )
c) \(=\left(x^2+4xy+4y^2\right)-25\)
\(=\left(x+2y\right)^2-5^2\)
\(=\left(x+2y+5\right)\left(x+2y-5\right)\)
Bài 7: Phân tích đa thức sau thành nhân tử: a/ x – xy + y – y² b/ x²– 2x – y²+ 1 c)4x^2 -4xy +y^2 d)9x^3-9x^2y -4x +4y e)x^3 +2+3(x^3-2)
a) \(x-xy+y-y^2=x\left(1-y\right)+y\left(1-y\right)=\left(x+y\right)\left(1-y\right)\)
b) \(x^2-2x-y^2+1=\left(x^2-2x+1\right)-y^2=\left(x-1\right)^2-y^2=\left(x-y-1\right)\left(x+y-1\right)\)
c) \(4x^2-4xy+y^2=\left(2x\right)^2-2.2x.y+y^2=\left(2x-y\right)^2\)
d) \(9x^3-9x^2y-4x+4y=9x^2\left(x-y\right)-4\left(x-y\right)=\left(9x^2-4\right)\left(x-y\right)=\left(3x-2\right)\left(3x+2\right)\left(x-y\right)\)
e) \(x^3+2+3\left(x^3-2\right)=x^3+2+3x^3-6=4x^3-4=4\left(x^3-1\right)=4\left(x-1\right)\left(x^2+x+1\right)\)