Tìm Điều kiện xác định : \(\frac{1}{x-\sqrt{2x}-1}\)
Tìm điều kiện xác định của \(\sqrt{\frac{x-2}{x^2-2x+1}}\)
\(\frac{x-2}{x^2-2x+1}\ge0\)
\(\frac{x-2}{\left(x-2\right)^2}\ge0\)
\(\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x>2\)
hoc lop may roi đại lộc .
Ta nhận xét thấy mẫu luôn lớn hơn hoặc bằng 0 nên ta có
ĐKXĐ là
\(\hept{\begin{cases}x-2\ge0\\x^2-2x+1\ne0\end{cases}}\Leftrightarrow x\ge2\)
ĐKXĐ:x^2-2x+1<>0
x^2-x-x+1<>0
x(x-1)-(x-1)<>0
(x-1)(x-1)<>o
x-1<>0
x<>1
M= \(\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{x\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm điều kiện xác định của M và rút gọn M
b) Tìm giá trị nhỏ nhất của M
Tìm điều kiện xác định
\(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
\(\sqrt{x^2-2x+1}+\sqrt{x^2-4x+4}=3\)
a: ĐKXĐ: \(x\in R\)
b: ĐKXĐ: \(x\in R\)
Tìm điều kiện xác định:
1/ \(3\sqrt{1-2x}-\)\(\sqrt{3-4x}\)
2/ \(\sqrt{1+x}\)\(-2\sqrt{-4x}\)
a) ĐKXĐ:
$\begin{cases}1-2x\ge 0\\3-4x\ge 0\end{cases}\\\Leftrightarrow \begin{cases}2x\le 1\\4x\le 3\end{cases}\\\Leftrightarrow \begin{cases}x\le \dfrac{1}{2}\\x\le \dfrac{3}{4}\end{cases}\\\Leftrightarrow x\le \dfrac{1}{2}$
b) ĐKXĐ:
$\begin{cases}1+x\ge 0\\-4x\ge 0\end{cases}\\\Leftrightarrow \begin{cases}x\ge -1\\x\le 0\end{cases}\\\Leftrightarrow-1\le x\le 0$
tìm điều kiện xác định của bất phương trình \(\sqrt{2-x}+x< 2+\sqrt{1-2x}\)
ĐK: \(\left\{{}\begin{matrix}2-x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}\le x\le2\)
Tìm điều kiện xác định của biểu thức : B = \(\sqrt{x^2-3x}\) + \(\sqrt{\dfrac{x-5}{x-1}}\)- \(\sqrt[3]{2x-1}\)
Tìm điều kiện xác định của biểu thức sau:
a)\(\frac{1}{1-\sqrt{x^2}-3}\)
b)\(\frac{\sqrt{16-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+14}\)
Mình nghĩ đề câu a) là \(\frac{1}{1-\sqrt{x^2-3}}\) khi đó
\(1-\sqrt{x^2-3}\ne0\Rightarrow\sqrt{x^2-3}\ne1\Rightarrow x\ne\pm2\)và \(x^2-3\ge0\Leftrightarrow-\sqrt{3}\le x\le\sqrt{3}\)
b)
\(\sqrt{16-x^2}\ge0;\sqrt{2x+1}\ge0;\sqrt{x^2-8x+14}\ge0\)và \(\sqrt{2x+1}\ne0\)
\(\Leftrightarrow-4\le x\le4;x\ge-\frac{1}{2};4-\sqrt{2}\le x\le4+\sqrt{2};x\ne\frac{1}{2}\)
Như vậy \(-\frac{1}{2}< x\le4+\sqrt{2}\)
Tìm điều kiện xác định của các hàm số:
a) \(y=\sqrt{5x+3}+\sqrt{2x+1}\)
b) \(y=\sqrt{x-7}+\sqrt{14-x}\)
`a)` Hàm số xác định `<=>{(5x+3 >= 0),(2x+1 >= 0):}`
`<=>{(x >= -3/5),(x >= -1/2):}<=>x >= -1/2`
`b)` Hàm số xác định `<=>{(x-7 >= 0),(14-x >= 0):}`
`<=>{(x >= 7),(x <= 14):}<=>7 <= x <= 14`
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
a)Tìm điều kiện xác định, rút gọn biểu thức
b)Tìm giá trị nhỏ nhất P
c)Tìm x để biểu thức Q=\(\frac{2\sqrt{x}}{P}\)nhận giá trị nguyên