Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lyly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 20:12

a: \(ax+by+cz\)

\(=x^3-xyz+y^3-xyz+z^3-xyz\)

\(=x^3+y^3+z^3-3xyz\)

Lyly
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 10 2021 lúc 20:50

b: \(ax+by+cz\)

\(=x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3+z^3-3xy\left(x+y\right)-3yxz\)

\(=\left(x+y+z\right)\left(x^2+y^2+2xy-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Trần Khánh Linh
Xem chi tiết
Viet Xuan
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 11 2021 lúc 15:42

\(ax+by+cz\\ =x\left(x^2-yz\right)+y\left(y^2-xz\right)+z\left(z^2-xy\right)\\ =x^3+y^3+z^3-3xyz\\ =\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\\ =\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\\ =\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

Lại có \(a+b+c=x^2+y^2+z^2-xy-yz-xz\)

Vậy ta được đpcm

Vũ Nguyễn
Xem chi tiết
Nam Khánh
Xem chi tiết
Võ Đông Anh Tuấn
19 tháng 10 2016 lúc 10:10

Phân tích mẫu :

\(M=bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

Khai triển các bình phương và gom các nhân tử chung :

\(M=\left(ab+ac\right)x^2+\left(ab+bc\right)y^2+\left(bc+ac\right)z^2-2abxy-2bcxy-2acxy\)

\(=\left[\left(ab+ac\right)x^2+a^2x^2+\left(ab+bc\right)y^2+b^2y^2+\left(bc+ac\right)z^2+c^2z^2\right]-\)\(\left(a^2x^2+b^2y^2+c^2z^2+2ab+2aczx+2bcyz\right)\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)-\left(ax+by+cz\right)^2\)

\(=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\) ( vì \(ax+by+cz=0\) )

Kết quả :  \(M=\frac{1}{a+b+c},a+b+c\ne0\)

Thị Thu
Xem chi tiết
Võ Đông Anh Tuấn
23 tháng 12 2016 lúc 8:59

Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{c}{z}=k\ne0\) thì \(x=ak;y=bk;z=ck.\)

Do đó : \(\frac{\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)}{\left(ax+by+cz\right)^2}=\frac{\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)}{\left(a^2k+b^2k+c^2k\right)^2}\)

\(=\frac{k^2\left(a^2+b^2+c^2\right)^2}{k^2\left(a^2+b^2+c^2\right)^2}=1.\)

 

Trịnh Hải Yến
Xem chi tiết
trần mai hoa
27 tháng 11 2015 lúc 14:58

ai tích cho mình đi,mình tích lại cho

Chi Dang
Xem chi tiết
ST
26 tháng 11 2018 lúc 20:27

Đặt B = \(bc\left(y-z\right)^2+ca\left(z-x\right)^2+ab\left(x-y\right)^2\)

\(=bcy^2+bcz^2+caz^2+cax^2+abx^2+aby^2-2\left(bcyz+acxz+abxy\right)\) (1)

Từ \(ax+by+cz=0\Rightarrow\left(ax+by+cz\right)^2=0\)

=>\(a^2x^2+b^2y^2+c^2z^2+2\left(bcyz+acxz+abxy\right)=0\)

=>\(a^2x^2+b^2y^2+c^2z^2=-2\left(bcyz+acxz+abxy\right)\) (2)

Thay (2) vào (1) ta được:

\(B=ax^2\left(b+c\right)+by^2\left(a+c\right)+cz^2\left(a+b\right)+a^2x^2+b^2y^2+c^2z^2\)

\(=ax^2\left(a+b+c\right)+by^2\left(a+b+c\right)+cz^2\left(a+b+c\right)\)

\(=\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)\)

Vậy \(A=\frac{\left(ax^2+by^2+cz^2\right)\left(a+b+c\right)}{ax^2+by^2+cz^2}=a+b+c\)