Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lan chi
Xem chi tiết
Kiều Vũ Linh
26 tháng 11 2023 lúc 7:15

loading...

Do AH ⊥ BC (gt)

⇒ AH ⊥ BH

Do ∆ABC vuông cân tại A (gt)

AH là đường cao

⇒ AH cũng là đường trung tuyến của ∆ABC

⇒ H là trung điểm của BC

Gọi D là giao điểm của AB và HK

Do H và K đối xứng nhau qua AB (gt)

⇒ D là trung điểm của HK và AB là đường trung trực của HK

⇒ HK ⊥ AB

Mà AB ⊥ AC

⇒ HK // AC

⇒ HD // AC

Mà H là trung điểm của BC

⇒ D là trung điểm AB

Do ∆ABC vuông cân tại A (gt)

AH là đường trung tuyến của ∆ABC (cmt)

⇒ AH = HB = HC = BC : 2

Tứ giác AHBK có:

D là trung điểm HK (cmt)

D là trung điểm AB (cmt)

⇒ AHBK là hình bình hành

Mà AH ⊥ BH (cmt)

⇒ AHBK là hình chữ nhật

Lại có AH = BH (cmt)

⇒ AHBK là hình vuông

Ngọc Bùi
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 22:51

a: Xét tứ giác AHBK có 

M là trung điểm của AB

M là trung điểm của HK

Do đó: AHBK là hình bình hành

mà \(\widehat{AHB}=90^0\)

nên AHBK là hình chữ nhật

b:

Xét tứ giác AKHC có 

AK//HC

AK=HC

Do đó: AKHC là hình bình hành

c: Xét ΔABC có

N là trung điểm của AC

H là trung điểm của BC

Do đó: NH là đường trung bình

=>NH//AB và NH=AB/2

hay NH//AM và NH=AM

=>AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

Vân Vũ Hồng
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 12 2020 lúc 19:50

a) Xét tứ giác AHBK có 

D là trung điểm của đường chéo AB(gt)

D là trung điểm của đường chéo KH(K đối xứng với H qua D)

Do đó: AHBK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AHBK có \(\widehat{AHB}=90^0\)(AH⊥BC)

nên AHBK là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(AH⊥BC)

nên H là trung điểm của BC(Định lí tam giác cân)

\(BH=\dfrac{BC}{2}=\dfrac{16}{2}=8cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được: 

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow AB^2=8^2+9^2=145\)

\(\Leftrightarrow AB=\sqrt{145}\)(cm)

Xét ΔABH vuông tại H có HD là đường trung tuyến ứng với cạnh AB(D là trung điểm của AB)

nên \(HD=\dfrac{AB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

nên \(HD=AD=\dfrac{AB}{2}=\dfrac{\sqrt{145}}{2}cm\)

Nửa chu vi của tam giác ADH là: 

\(P_{ADH}=\dfrac{HD+AD+AH}{2}=\dfrac{\left(\dfrac{\sqrt{145}}{2}+\dfrac{\sqrt{145}}{2}+8\right)}{2}=\dfrac{\sqrt{145}+8}{2}cm\)

Diện tích của tam giác ADH là: 

\(S_{ADH}=\sqrt{P\cdot\left(P-AD\right)\cdot\left(P-AH\right)\cdot\left(P-DH\right)}\)

\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-\dfrac{\sqrt{145}}{2}\right)\cdot\left(\dfrac{\sqrt{145}+8}{2}-8\right)}\)

\(=\sqrt{\dfrac{\sqrt{145}+8}{2}\cdot16\cdot\dfrac{\sqrt{145}-8}{2}}\)

\(=\sqrt{\dfrac{145-64}{2}\cdot16}\)

\(=\sqrt{\dfrac{81}{2}\cdot16}=18\sqrt{2}cm^2\)

 

Minh Thi
Xem chi tiết
Huy trần
Xem chi tiết
shiro mc sora
Xem chi tiết
Nguyễn Lê Phước Thịnh
11 tháng 1 2022 lúc 23:02

a: Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{NAM}=90^0\)

Do đó: AMHN là hình chữ nhật

mà AM=AN

nên AMHN là hình vuông

b: Xét tứ giác CEFB có

A là trung điểm của CF

A là trung điểm của EB

Do đó CEFB là hình bình hành

mà CF=EB

nên CEFB là hình chữ nhật

mà CF⊥EB

nên CEFB là hình vuông

nguyễn hoàng gia bảo
Xem chi tiết
Kiều Vũ Linh
31 tháng 10 2023 lúc 16:22

loading... a) Do H và K đối xứng nhau qua I

⇒ I là trung điểm của HK

Do AH là đường cao của ∆ABC

⇒ AH ⊥ BC

⇒ ∠AHB = 90⁰

Tứ giác AHBK có:

I là trung điểm HK (cmt)

I là trung điểm AB (gt)

⇒ AHBK là hình bình hành

Mà ∠AHB = 90⁰ (cmt)

⇒ AHBK là hình chữ nhật

b) ∆ABC cân tại A (gt)

AH là đường cao

⇒ AH cũng là đường trung tuyến của ∆ABC

⇒ H là trung điểm BC

Mà I là trung điểm AB (gt)

⇒ HI là đường trung bình của ∆ABC

⇒ HI // AC

Tứ giác ACHI có:

HI // AC (cmt)

⇒ ACHI là hình thang

c) ∆ABC đều

⇒ ∠BAC = ∠ACB = 60⁰

⇒ ∠IAC = ∠ACH = 60⁰

Mà ACHI là hình thang (cmt)

⇒ ACHI là hình thang cân

Triệu Nguyễn Gia Huy
Xem chi tiết
Đặng Tiến
26 tháng 7 2016 lúc 13:37

A B C H K I

a) Do \(\Delta ABH\)vuông (gt):

mà I Trung điểm AB (gt) 

nên \(HI=\frac{1}{2}AB=\frac{6}{2}=3cm\)

b) Xét Tứ giác AHBK:

HI = HK (gt)

AI = AB (gt)

=> Tứ giác ABHK là hình bình hành (2 đường chéo cắt nhau tai trung điểm mỗi đường)

mà \(HI=\frac{1}{2}AB\Leftrightarrow2HI=AB\Leftrightarrow HK=AB\)

=> Hình bình hành ABHK là hình chữ nhật (đpcm).

c) Điều kiện để HCN ABHK là hình vuông thì  \(\Delta ABC\)thì:

Dường cao AH = HB 

=> HCN AHBK là hình vuông.

Đào Ngọc Minh
26 tháng 7 2016 lúc 16:12

ai chịch nhau với mình không

Daco Mafoy
Xem chi tiết
Nguyễn Kiều Duyên
27 tháng 11 2017 lúc 21:19

4) Gọi D là trung điểm của CK. 
ΔABC cân ở A có AH là đường cao, đồng thời là đường trung tuyến 
⇒ CH ⊥ FH; H là trung điểm của BC 
⇒ DH là đường trung bình của ΔBCK ⇒ DH // BK. 
I là trung điểm của HK ⇒ DI là đường trung bình của ΔCHK 
⇒ DI // CH ⇒ DI ⊥ FH. 
K là hình chiếu của H lên CF ⇒ HI ⊥ DF 
⇒ I là trực tâm của ΔDFH ⇒ FI ⊥ DH ⇒ FI ⊥ BK.

doan thi khanh linh
29 tháng 12 2017 lúc 13:23

a) diện tích của tam giác ABC là SABC=1/2.AH.BC=1/2.16.12=96 tam giác ABC có M là trung điểm AB N là trung điểm AC nên MN là đường trung bình của tam giác ABC => MN=1/2BC=1/2.12=6 vậy MN=6