Chứng minh rằng: 4+4^2+4^3+...+4^24 chia hết cho 20
Cho A= 4+4^2+4^3+...+4^23+4^24
Chứng minh rằng A chia hết cho 20, chia hết cho 21, chia hết cho 420
giup mk nhé
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + (4^7 + 4^8 + 4^9 + 4^10 + 4^11 + 4^12) + (4^13 + 4^14 + 4^15 + 4^16 + 4^17 + 4^18) + (4^19 + 4^20 + 4^21 + 4^22 + 4^23 + 4^24)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^6(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^12(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6) + 4^18(4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6)
A = (4 + 4^2 + 4^3 + 4^4 + 4^5 + 4^6).(1+4^6+4^12+4^18)
A = 5460.(1+4^6+4^12+4^18)
A = 420 . 13(1+4^6+4^12+4^18) => A chia hết cho 420
A = 20.21.13(1+4^6+4^12+4^18) => A chia hết cho 20 ; 21
Cho A = 4 + 42 + 43 +...+ 423 + 424. Chứng minh rằng :
A chia hết cho 20 ; A chia hết cho 21 ; A chia hết cho 420
\(A=\left(4+4^2\right)+.......+\left(4^{23}+4^{24}\right)\)
\(A=20.1+20.2^4+.......+20.2^{24}\)
\(A=20.\left(1+2^4+..........+2^{24}\right)\)
Vậy A chia hết cho 20
\(A=\left(4+4^2+4^3\right)+........+\left(4^{22}+4^{23}+4^{24}\right)\)
\(A=4.21+4^4.21+......+4^{20}.21\)
\(A=21.\left(1+4^4+......+4^{20}\right)\)
Vậy A chia hết cho 21
\(A=\left(4+4^2+......+4^6\right)+.........+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)\(A=13.420+4^6.13.420+........+4^{18}.13.420\)
\(A=420.13.\left(1+4^6+4^{12}+4^{18}\right)\)
Vậy A chia hết cho 420
MỜI CÁC ANH CHỊ LÀM HỘ:
a) cho 2a+5 chia hết cho 7. Chứng minh rằng 10a+11 chia hết cho 7
b) cho A= 4+42+43+.....+423+424. Chứng minh rằng A chia hết cho 5, A chia hết cho 20, A chia hết cho 21, A chia hết cho 420
THANKS ^_^@!
Cho `A = 4 + 4^2 + 4^3 +...+ 4^23 + 4^24`
Chứng minh A chia hết 20; A chia hết 21; A chia hết 420
Lời giải:
$A=(4+4^2)+(4^3+4^4)+....+(4^{23}+4^{24})$
$=(4+4^2)+4^2(4+4^2)+....+4^{22}(4+4^2)$
$=(4+4^2)(1+4^2+...+4^{22})$
$=20(1+4^2+...+4^{22})\vdots 20$
----------------------------
$A=(4+4^2+4^3)+(4^4+4^5+4^6)+....+(4^{22}+4^{23}+4^{24})$
$=4(1+4+4^2)+4^4(1+4+4^2)+....+4^{22}(1+4+4^2)$
$=(1+4+4^2)(4+4^4+...+4^{22})$
$=21(4+4^4+....+4^{22})\vdots 21$
----------------------
Vậy $A\vdots 20; A\vdots 21$. Mà $(20,21)=1$ nên $A\vdots (20.21)$ hay $A\vdots 420$
Cho A = 4 + 42 + 43 +......+ 423+ 424. Chứng minh rằng A chia hết cho 20 ; 21 ; 420.
Ta có:
A = 4 + 42 + 43 +......+ 423+ 424
= (4 + 42)) + (43 +44)......+ (423+ 424)
=(4 + 42).1+(4 + 42).42+...+(4 + 42).422
=20.(1+42+...+422) chia hết cho 20
Ta lại có:
A = 4 + 42 + 43 +......+ 423+ 424
=(4 + 42 + 43)+...+(422+423+424)
=(4 + 42 + 43).1+...+(4 + 42 + 43).421
=21.(1+...+421) chia hết cho 21
Vì A chia hết cho 21 và 20 , mà ƯCLN(20;21)=1 => A chia hết cho 20 và 21 tức là A chia hết cho 20.21=420
Vậy...
A = 4 + 42 + 43 +......+ 423+ 424
Ta thấy các cặp số liên tiếp cộng lại với nhau đều chia hết cho 20, ví dụ:
4 + 42 = 20, 43 + 44 = 320, 45 + 46 = 5120...
Vì đây là số chẵn, nên A sẽ chia hết cho 20.
Tiếp tục, BC (21 và 4) = {84; 168; 252; 336; 420; 504; 588....}
Như vậy, ta để ý thấy tích của các lũy thừa gồm số 4 và số mũ đều là số chẵn, BC của 4 và 21 cũng đều là số chẵn.
Vậy A chia hết cho 21.
Song, vì A chia hết cho 20 và 21, trong trường hợp này A chỉ có thể chia hết cho 20.21 = 420
A=4+42+43+.....+423+424
A=1x(4+42)+42x(4+42)+...+422x(4+42)
A=20+42x20+...+422x20
A=20x(42+...+422) chia hết cho 20
tương tự với các bài khác
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Cho A= 4 + 4\(^2\) + 4\(^3\) +...............+ 4\(^{23}\) + 4\(^{24}\). Chứng minh rằng
A chia hết cho 20
A chia hết cho 21
A chia hết cho 420
a/ Ta có :
\(A=4+4^2+.....+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+....+\left(4^{23}+4^{24}\right)\) (12 nhóm)
\(=4\left(4+4^2\right)+4^3\left(4+4^2\right)+.......+4^{23}\left(4+4^2\right)\)
\(=4.20+4^3.20+.....+4^{23}.20\)
\(=20\left(4+4^3+...+4^{23}\right)⋮20\)
\(\Leftrightarrow A⋮20\left(đpcm\right)\)
b/ Ta có :
\(A=4+4^2+4^3+........+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+.......+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+....+4^{22}\left(1+4+4^2\right)\)
\(=4.21+4^4.21+....+4^{22}.21\)
\(=21\left(4+4^4+......+4^{22}\right)⋮21\)
\(\Leftrightarrow A⋮21\left(đpcm\right)\)
*A chia hết cho 20 : A có 24 lũy thừa.
Trước hết ta thấy rõ A chia hết cho 4 vì từng số hang của dãy số A chia hết cho 4
A có 24 lũy thừa nên ta chia thành 12 cặp lũy thừa
A = (4+4^2) + (4^3+4^4) + ...+ (4^23+4^24)
A = 4.(1+4) + 4^3.(1+4) + ...+ 4^23.(1+4)
A = 4.5 + 4^3.5 + .....+ 4^23.5
vậy A chia hết cho 5 và 4 nên A chia hết cho 20
*A chia hết cho 21 : A có 24 lũy thừa
Nhóm thành mỗi nhóm 3 lũy thừa ta được 8 nhóm lũy thừa
A = 4.(1+4+4^2) + ......+ 4^22.(1+4+4^2)
A = 4.21 + ......+4^22.21 => A chia hết 21
Vậy A chia hết cho 21.
*A chia hết cho 420 .
Ta có : A chia hết cho 20 và 21 mà 20 và 21 là nguyên tố cùng nhau nên
A chia hết cho 20.21 = 420 (Áp dụng: Một số đồng thời chia hết cho cả m và n. m và n đồng thời chỉ chia hết cho 1 và chính nó thì số đó chia hết cho tích mxn)
Vậy A chia hết cho 420 .
a. Ta có:
A = 4 + 4 + 4 +......+ 4 + 4
A = \(\left(4+4^2\right)+\left(4^3+4^4\right)+......+\left(4^{23}+4^{24}\right)\)
A = \(4\left(4+4^2\right)+4^3\left(4+4^2\right)+......+4^{23}\left(4+4^2\right)\)
A = \(4.20+4^3.20+......+4^{23}.20\)
A = \(20\left(4+4^3+......+4^{23}\right)\)
\(\Leftrightarrow\) A \(⋮\) \(20\) (đpcm)
b. Ta có:
A = \(4+4^2+4^3+......+4^{23}+4^{24}\)
A = \(\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+......+\left(4^{22}+4^{23}+4^{24}\right)\)
A = \(4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+......+4^{22}\left(1+4+4^2\right)\)
A = \(4.21+4^4.21+......+4^{22}.21\)
A = \(21\left(4+4^4+......+4^{22}\right)\)
\(\Leftrightarrow\) A \(⋮\) \(21\) (đpcm)
c. Ta có:
Vì A \(⋮\) \(20\) và A \(⋮\) 21
\(\Rightarrow\) A \(⋮\) \(\left(20.21\right)\)
\(\Rightarrow\) A \(⋮\) \(420\) (đpcm)
Cho:
A=4+42+43+...+424
Chứng minh rằng A chia hết cho 20
A chia hết cho 21
Ta có :
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + 43 . ( 4 + 16) + ... + 423 .(4 + 16)
= 20 + 43. 20 + ... + 423 . 20 \(⋮\)cho 20
A=4+42+43+...+424 chứng minh A chia hết cho 20
A = 4 + 42 + 43 + ... + 424
= (4 + 42) + (43 + 44) + ... + (423 + 424)
= 20 + 42(4 + 42) + ... + 422(4 + 42)
= 20 + 42.20 + ... + 422.20
= 20.(1 + 42 + ... + 422) \(⋮20\)
@PARTICULARLY JUST ME