Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
9.Trần Thùy Dương
Xem chi tiết
Hoàng Tử Hà
22 tháng 12 2020 lúc 22:18

Đề bài sai òi :v Vẽ hình ra đi bạn.

Giờ tui gán MN vô (SBD) thì giao tuyến của (SBD) và (SBC) là SB. Vậy nên SB phải song song với MN. Nhưng ko :) Song song chết liền hà :)

Buddy
Xem chi tiết
Quoc Tran Anh Le
22 tháng 9 2023 lúc 20:37


a) mp(MAB) và (SCD)có điểm M chung và chứa hai đường thẳng thẳng song song là AB và CD

Do đó giao tuyến của hai mặt phẳng (MAB) và (SCD) là đường thẳng a đi qua M và song song với CD, AB.

b, Do MN //CD và M là trung điểm của SD. 

Suy ra, MN là đường trung bình của tam giác SCD.

Linh Lê
Xem chi tiết
nguyen thi vang
3 tháng 1 2021 lúc 22:05

a) Do MN\(\subset\) (BMN); AD \(\subset\)(ABCD) nên I là một điểm chung của (BMN) với (ABCD). Dễ thấy B là một điểm chung khác I

Vậy (BMN)\(\cap\) (ABCD) =BI

b) J\(\in\)BI\(\subset\) (BMN)

\(\in\) (CD) \(\subset\) (SCD) 

nên J là một điểm chung của (BMN) \(\cap\) (SCD)

vậy (SCD) \(\cap\) (BMN) =NJ

Thiết diện của (BMN) với hình chóp là tứ giác AMNJ

c) Áp dụng định lí Menelaus Trong \(\Delta SAD\) có cát tuyến MNI có:

\(\dfrac{ID}{IA}.\dfrac{MA}{MS}.\dfrac{NS}{ND}=1\)

\(\dfrac{ID}{IA}.1.2=1\) => \(\dfrac{ID}{IA}=\dfrac{1}{2}\)

=> D là trung điểm AI

+ Xét tam giác SAI có 2 trung tuyến MI, SD giao nhau tại N => N là trong tâm tam giác SAI

=> \(\dfrac{NI}{MI}=\dfrac{2}{3}\)

Ta có AD//BC

=> \(\dfrac{IK}{BK}=\dfrac{AI}{BC}=\dfrac{2AD}{BC}=2\)(do AD=BC)

=> \(\dfrac{IK}{IB}=\dfrac{2}{3}\)

Xét tam giác MIB có: \(\dfrac{NI}{MI}=\dfrac{IK}{IB}=\dfrac{2}{3}\)

=> BM//NK

Trần Như Đức Thiên
Xem chi tiết
nguyen ngoc son
Xem chi tiết
Phạm Thy
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 11:57

Trong tam giác SBD, MN là đường trung bình \(\Rightarrow MN||BD\)

\(\Rightarrow MN||\left(ABCD\right)\)

Trong mp (ABCD), qua E kẻ đường thẳng song song BD cắt BC tại F và cắt AD kéo dài tại G

Trong mp (SAD), nối GN kéo dài cắt SA tại P

Ngũ giác PNEFM là thiết diện của (MNE) và chóp

Ha My
Xem chi tiết
Nguyễn Băng
Xem chi tiết

Do M là trung điểm SD, N là trung điểm SC \(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN||CD\) (1)

Tương tự PQ là đường trung bình tam giác SAB \(\Rightarrow PQ||AB\)

\(\Rightarrow MN||PQ\Rightarrow\) 4 điểm M, N, P, Q đồng phẳng

Lại có MQ là đường trung bình tam giác SAD \(\Rightarrow MQ||AD\)

Mà \(AD\in\left(ABCD\right)\Rightarrow MQ||\left(ABCD\right)\) 

Do \(CD\in\left(ABCD\right)\), từ \(\left(1\right)\Rightarrow MN||\left(ABCD\right)\) 

Mà \(\left\{{}\begin{matrix}MN\in\left(MNPQ\right)\\MQ\in\left(MNPQ\right)\\MN\cap MQ=M\end{matrix}\right.\)\(\Rightarrow\left(MNPQ\right)||\left(ABCD\right)\)

Thư Hoàii
Xem chi tiết