Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình thang có
AD || BC, AD = 2BC. Gọi M và N lần lượt là trung điểm của các cạnh
SC và BC.
a) Tìm giao tuyến của hai mp (SAB) và (SCD).
b) Chứng minh MN || (SBD).
c) Tìm giao điểm của SD với mp (AMN)
Cho hình chóp SABCD, đáy ABCD là hình bình hành có tâm O và M,N là lần lượt là trung điểm SB,SC.
1/ Tìm giao tuyến (SAC) với (SBD) và (SAB) với (SCD)
2/ Chứng minh ADNM là hình thang và MO // (SAD)
3/ Gọi K là giao điểm của AN và DM. Chứng minh ba điểm S,O,K thẳng hàng
4/ Gọi E trên đường chéo AC sao cho AE=2EC. Chứng minh KE // (SBC)
Cho hình Chóp S.ABCD có đáy là hình thang, đáy lớn AB. Gọi O là giao điểm của AC và BD
a. Tìm giao tuyến của hai mặt phẳng (SAD) và (SAB), (SAB)và (SCD)
b. Trên SC lấy điểm M tùy ý. Tìm giao điểm K của SD và mp (ABM)
c. Tìm thiết diện của hình chóp với mặt phẳng (ABM)
giúp mình với
Cho hình chóp S ABCD có đáy hình bình hành tâm O, hai điểm M,N lần lượt là trung điểm của SB,SD. Điểm P thuộc SC và không là trung điểm của SC a)tìm giao điểm Q của SA với mp(MNP) b)tìm giao điểm H của AD với mp(MNP c)tìm giao điểm G của AC với mp(MNP) d) chứng minh MQ,AB,GH đồng quy
Cho hình chóp S.ABCD đáy là hình bình hành tâm O. Gọi M , N , P lần lượt là trung điểm SA , SB , SC
a ) Tìm giao tuyến của ( DMP ) và ( ABCD )
b ) Tìm giao tuyến của ( DMP ) và ( SBC )
c ) Tìm giao điểm của SB và ( DMP )
d ) Chứng minh MP / ( ABCD ) và MN / ( SCD )
e ) Cm : ( MNP ) // ( ABCD ) .
f ) Gọi Q là trung điểm MN . Chứng minh PQ / ( ABCD )
g ) Tìm thiết diện của ( MNP ) với S.ABCD
Cho hình chóp SABCD, có đáy ABCD là một hình bình hành tâm O.
Gọi I, K lần lượt là trung điểm của SB và SD.
a) Tìm giao tuyến của (SAC) và (SBD).
b) Tìm giao điểm J của SA với (CKB).
c) Tìm giao tuyến của (OIA) và (SCD)
CHO HÌNH CHÓP SABCD CÓ ĐÁY ABCD LÀ HÌNH BÌNH HÀNH . GỌI M N E LẦN LƯỢT LÀ TRUNG ĐIỂM SA ; SD ; BC .
A/ TÌM GIAO TUYẾN (MBC) VÀ (SAD).
B/ TÌM GIAO ĐIỂM BM VÀ (SAC).
C/ CHỨNG MINH MN// (SBC).
D/NE // (SAB)
Cho hình chóp SABCD có đáy ABCD là hình bình hành.
a) Xác định giao tuyến của (SAB) và (SCD); (SAD) và (SBC).
b) Gọi M\(\in SC\), tìm giao tuyến của (ABM) và (SCD).
c) Gọi N\(\in SB\), tìm giao tuyến của (SAB) và (NCD).