Viết phương trình đường thẳng :
a) Đi qua 2 điểm A(0;-3) và B(1;-1)
b) Đi qua 2 điểm A(1;5) và B(-1;4)
Cho 3 điểm A ( 0; -8 ) , B ( 5/2 ; 2 ) , C ( 1; 7 ) và đường thẳng (d1) có phương trình 3x + 2y = -1
a, Viết phương trình đường thẳng (d2) đi qua hai điểm A và B
b, Viết phương trình đường thẳng (d3) đi qua điểm C và song song với (d1)
Viết phương trình đường thẳng \({d_1}\):
a) Đi qua điểm \(A(2;3)\) và song song với đường thẳng \({d_2}:x + 3y + 2 = 0\)
b) Đi qua điểm \(B(4; - 1)\) và vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\)
a) \({d_1}\) song song với đường thẳng \({d_2}:x + 3y + 2 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_2}\) làm vectơ pháp tuyến là \(\overrightarrow n = \left( {1;3} \right)\)
\({d_1}\) đi qua điểm \(A(2;3)\) nên ta có phương trình tổng quát
\(\left( {x - 2} \right) + 3.\left( {y - 3} \right) = 0 \Leftrightarrow x + 3y - 11 = 0\)
b) \({d_1}\) vuông góc với đường thẳng \({d_3}:3x - y + 1 = 0\) nên nhận vectơ pháp tuyến của đường thẳng \({d_3}\) làm vectơ chỉ phương là \(\overrightarrow u = \left( {3; - 1} \right)\)
\({d_1}\) đi qua điểm \(B(4; - 1)\) nên ta có phương trình tham số: \(\left\{ \begin{array}{l}x = 4 + 3t\\y = - 1 - t\end{array} \right.\)
Trong mặt phẳng Oxy, cho điểm A( 2; -1) và đường thẳng d có phương trình 3x - 4y +5 = 0. a/ Viết phương trình tham số đường thẳng đi qua điểm A và vuông góc với đường thẳng d. b/ Viết phương trình đường tròn (C) có tâm là điểm A và cắt đường thẳng d tại 2 điểm M, N sao cho MN = 8.
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;1),B(4;-2) và đường thẳng d: -x+2y+1=0. a) Viết phương trình tham số của Δ đi qua A song song với đường thẳng d b) Viết phương trình tổng quát của Δ đi qua B và vuông góc với đường thẳng d c) Viết phương trình đường tròn có bán kính AB
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng P1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng P2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng Δ1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng Δ2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
trong mặt phẳng xOy cho 2 điểm A<2,3>, B<1 ,-2> và đường thẳng d x-3y +1 bằng 0
a, viết phương trình tham số của đường thẳng P1 đi qua A và nhận u <1,-5> làm vecto chỉ phương
b, viết phương trình tổng quát của đường thẳng P2 đi qua B và vuông góc với đường thẳng d
c, tính khoảng cách từ gốc O đến đường thẳng AB
Trong mặt phẳng toạ độ Oxy, cho điểm A(0; -2) và đường thẳng \(\Delta \): x + y - 4 = 0.
a) Tính khoảng cách từ điểm A đến đường thẳng \(\Delta \).
b) Viết phương trình đường thẳng a đi qua điểm M(-1; 0) và song song với \(\Delta \).
c) Viết phương trình đường thẳng b đi qua điểm N(0; 3) và vuông góc với \(\Delta \)
a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).
b) Ta có: \(\overrightarrow {{n_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\). Phương trình đường thẳng a là:
\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)
c) Ta có: \(\overrightarrow {{u_a}} = \overrightarrow {{n_\Delta }} = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}} = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:
\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)
Bài 14:
a) Viết phương trình đường thẳng đi qua điểm A ( 4 ; -5 ) và có hệ số góc a = -2
b) Viết phương trình đường thẳng qua hai điểm B ( 0 ;1 ) và C ( 8 : -1)
c) Ba điểm sau đây có thẳng hàng hay không : M ( -2 ; -3 ) , N ( -6 ; -5 ) , P ( 1 ; 1)
\(a,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a+b=-5\\a=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=3\end{matrix}\right.\Leftrightarrow y=-2x+3\)
\(b,\) Gọi đt cần tìm là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}8a+b=-1\\b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\b=1\end{matrix}\right.\Leftrightarrow y=-\dfrac{1}{4}x+1\)
\(c,\) Gọi đt đi qua M và N là \(y=ax+b\)
\(\Leftrightarrow\left\{{}\begin{matrix}-2a+b=-3\\-6a+b=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=-2\end{matrix}\right.\Leftrightarrow y=\dfrac{1}{2}x-2\)
Thay \(x=1;y=1\Leftrightarrow1=\dfrac{1}{2}\cdot1-2\Leftrightarrow1=-\dfrac{1}{2}\left(\text{vô lí}\right)\)
\(\Leftrightarrow P\notinđths\)
Vậy 3 điểm này ko thẳng hàng