Tìm x để \(A=\dfrac{1}{2}\) biết \(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
B =\(\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
Tìm các giá trị nguyên của x để \(\dfrac{A}{B}< 1\) biết A=\(\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(B=\dfrac{x-3}{x-1}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\sqrt{x}+1}+\dfrac{1}{\sqrt{x}-1}\)
\(=\dfrac{x-3-2\left(\sqrt{x}-1\right)+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}-2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(ĐặtP=\dfrac{A}{B}\)
=>\(P=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}:\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-2}{\sqrt{x}+1}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}}=\dfrac{2\sqrt{x}-2}{\sqrt{x}}\)
Để P<1 thì P-1<0
=>\(\dfrac{2\sqrt{x}-2-\sqrt{x}}{\sqrt{x}}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
mà x nguyên
nên \(x\in\left\{0;1;2;3\right\}\)
Tìm x để A>B \(2\sqrt{x}+5\) biết \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\) và \(B=\dfrac{1}{\sqrt{x}-5}\)
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >25\end{matrix}\right.\)
\(A>B\left(2\sqrt{x}+5\right)\)
=>\(\dfrac{\sqrt{x}+2}{\sqrt{x}-5}>=\dfrac{2\sqrt{x}+5}{\sqrt{x}-5}\)
=>\(\dfrac{\sqrt{x}+2-2\sqrt{x}-5}{\sqrt{x}-5}>=0\)
=>\(\dfrac{-\sqrt{x}-3}{\sqrt{x}-5}>=0\)
=>\(\sqrt{x}-5< 0\)
=>\(\sqrt{x}< 5\)
=>0<=x<25
A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)(x≥0,x≠4,x≠9)
1,Tìm x để A.\(\sqrt{x}\)=-1
2,Tìm x∈ Z để A∈Z
3, Tìm Min \(\dfrac{1}{A}\)
4,Tìm x∈N để A là số nguyên dương lớn nhất
5,Khi A+\(|A|\)=0, tìm GTLN của bth A.\(\sqrt{x}\)
1: Ta có: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-9-\left(x-9\right)+\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{2\sqrt{x}-9-x+9+2x-4\sqrt{x}+\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\)
Để \(A=-\dfrac{1}{\sqrt{x}}\) thì \(x+\sqrt{x}=-\sqrt{x}+3\)
\(\Leftrightarrow x+2\sqrt{x}-3=0\)
\(\Leftrightarrow\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow x=1\left(nhận\right)\)
2: Để A nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-3\)
\(\Leftrightarrow\sqrt{x}-3\in\left\{-1;1;2;-2;4;-4\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{2;4;5;1;7\right\}\)
\(\Leftrightarrow x\in\left\{16;25;1;49\right\}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2}{\sqrt{x}+1}-\dfrac{2}{x-1}\)
a) Rg A
b) Tính A khi x=9; x=7-\(4\sqrt{3}\)
c) Tìm x ϵ Z để A có giá trị nguyên
d) Tìm x để A=\(\dfrac{1}{\sqrt{x}}\); A=-2
a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(\Rightarrow A=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
b) \(x=9\Rightarrow A=\dfrac{3}{3+1}=\dfrac{3}{4}\)
\(x=7-4\sqrt{3}\Rightarrow A=\dfrac{\sqrt{7-4\sqrt{3}}}{\sqrt{7-4\sqrt{3}}+1}=\dfrac{\sqrt{7-2\sqrt{12}}}{\sqrt{7-2\sqrt{12}}+1}=\dfrac{\sqrt{4-2\sqrt{3}\sqrt{4}+3}}{\sqrt{4-2\sqrt{3}\sqrt{4}+3}+1}=\dfrac{2-\sqrt{3}}{2-\sqrt{3}+1}=\dfrac{2-\sqrt{3}}{3-\sqrt{3}}=\dfrac{\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3-\sqrt{3}\right)\left(3+\sqrt{3}\right)}=\dfrac{3-\sqrt{3}}{6}\)
Cho biểu thức
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)-\(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x \(\in\) Z để A nhận giá trị nguyên
f) Tìm GTNN của A
A = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\) + \(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\) - \(\dfrac{3\sqrt{x}+1}{x-1}\)
a) Rút gọn A
b) Tính giá trị của A khi x = 4 - \(2\sqrt{3}\)
c) Tìm x để A = \(\dfrac{1}{2}\)
d) Tìm x để A < 1
e) Tìm x ∈ Z để A nhận giá trị nguyên
f) Tìm GTNN của A
a, ĐK: \(x\ge0,x\ne1\)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b, \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
Khi đó:
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\left(\sqrt{3}-1\right)-1}{\left(\sqrt{3}-1\right)+1}\)
\(=\dfrac{2\sqrt{3}-3}{\sqrt{3}}\)
\(=2-\sqrt{3}\)
c, \(A=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}+1\)
\(\Leftrightarrow3\sqrt{x}=3\)
\(\Leftrightarrow x=1\left(l\right)\)
Vậy không tồn tại giá trị x thỏa mãn \(A=\dfrac{1}{2}\).
A=(\(\dfrac{2\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}-1}{3-\sqrt{x}}+\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}\))(\(3\sqrt{x}-\dfrac{\sqrt{x}+4}{\sqrt{x}-1}\))
a,rút gọn A b,tìm x để A<2
a: \(A=\dfrac{2x-6\sqrt{x}+\sqrt{x}-3-2x+4\sqrt{x}+\sqrt{x}-2+\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{3x-3\sqrt{x}-\sqrt{x}-4}{\sqrt{x}-1}\)
\(=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}:\dfrac{\sqrt{x}-1}{3x-4\sqrt{x}-4}\)
\(=\dfrac{1}{\sqrt{x}-2}\cdot\dfrac{3x-6\sqrt{x}+2\sqrt{x}-4}{\sqrt{x}-1}=\dfrac{3\sqrt{x}+2}{\sqrt{x}-1}\)
b: Để A<2 thì \(\dfrac{3\sqrt{x}+2-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)}< 0\)
=>x<1
Cho A= \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\) và B= \(\dfrac{2}{\sqrt{x}-1}-\dfrac{\sqrt{x}+2}{x-1}\)
a) rút gọn B
b) Tìm x để \(\dfrac{B}{A}\)= \(\dfrac{1-\sqrt{x}}{2x^2}\)
A=\(\dfrac{x+2}{x-\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\) và B=\(\dfrac{1}{\sqrt{x}-2}\)
a)P=A:B
b)Tìm x để P^2=P+2
Với \(x\ge0;x\ne4\) có:
\(A=\dfrac{x+2}{x-2\sqrt{x}+\sqrt{x}-2}-\dfrac{2\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\\ =\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}+\dfrac{x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\\ =\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\)
a
\(P=A:B=\dfrac{4\sqrt{x}+1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}-2}\\ =\dfrac{\left(4\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}+1}{\sqrt{x}+1}\)
b
\(P^2=P+2\\ \Leftrightarrow P^2-P-2=0\\ \Leftrightarrow P^2-2P+P-2=0\\ \Leftrightarrow P\left(P-2\right)+\left(P-2\right)=0\\ \Leftrightarrow\left(P-2\right)\left(P+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}P=2\\P=-1\end{matrix}\right.\)
Với P = 2 có:
\(\dfrac{4\sqrt{x}+1}{\sqrt{x}+1}=2\\ \Leftrightarrow2\left(\sqrt{x}+1\right)=4\sqrt{x}+1\\ \Leftrightarrow2\sqrt{x}+2-4\sqrt{x}-1=0\\\Leftrightarrow -2\sqrt{x}+1=0\\\Leftrightarrow-2\sqrt{x}=-1\\\Leftrightarrow \sqrt{x}=\dfrac{1}{2}\\ \Leftrightarrow x=\dfrac{1}{4} \)
Với P = -1 có:
\(\dfrac{4\sqrt{x}+1}{\sqrt{x}+1}=-1\\ \Leftrightarrow-\sqrt{x}-1-4\sqrt{x}-1=0\\ \Leftrightarrow-5\sqrt{x}=2\\ \Leftrightarrow\sqrt{x}=-\dfrac{2}{5}\left(loại\right)\)
Vậy để \(P^2=P+2\) thì \(x=\dfrac{1}{4}\)
a: P=A:B
\(=\dfrac{x+2-2x+4\sqrt{x}+x-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}:\dfrac{1}{\sqrt{x}-2}\)
\(=\dfrac{4\sqrt{x}+1}{\sqrt{x}+1}\)
b: P^2=P+2
=>P^2-P-2=0
=>(P-2)(P+1)=0
=>P=2(nhận) hoặc P=-1(loại)
=>\(4\sqrt{x}+1=2\sqrt{x}+2\)
=>2căn x=1
=>x=1/4