a, ĐK: \(x\ge0,x\ne1\)
\(A=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{3\sqrt{x}+1}{x-1}\)
\(=\dfrac{x+1+2\sqrt{x}+x+1-2\sqrt{x}-3\sqrt{x}-1}{x-1}\)
\(=\dfrac{2x-3\sqrt{x}+1}{x-1}\)
\(=\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
b, \(x=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)
Khi đó:
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\left(\sqrt{3}-1\right)-1}{\left(\sqrt{3}-1\right)+1}\)
\(=\dfrac{2\sqrt{3}-3}{\sqrt{3}}\)
\(=2-\sqrt{3}\)
c, \(A=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}+1\)
\(\Leftrightarrow3\sqrt{x}=3\)
\(\Leftrightarrow x=1\left(l\right)\)
Vậy không tồn tại giá trị x thỏa mãn \(A=\dfrac{1}{2}\).
d, \(A< 1\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\)
\(\Leftrightarrow2\sqrt{x}-1< \sqrt{x}+1\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow\sqrt{x}< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}0\le x< 4\\x\ne1\end{matrix}\right.\)
e, \(A\in Z\)
\(\Leftrightarrow\dfrac{2\sqrt{x}-1}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow2-\dfrac{3}{\sqrt{x}+1}\in Z\)
\(\Leftrightarrow\sqrt{x}+1\inƯ_3=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;4\right\}\)