CMR: \(\sin x>x\) \(\forall x< 0\)
CMR
\(4sinx.sin\left(\dfrac{\pi}{3}+x\right).sin\left(\dfrac{\pi}{3}-x\right)=sin3x ;\forall x\in R\)
Lời giải:
Sử dụng công thức lượng giác:
\(\cos a-\cos b=(-2)\sin \frac{a+b}{2}\sin \frac{a-b}{2}\) ta có:
\(\cos \frac{2\pi}{3}-\cos 2x=-2\sin \left(\frac{\pi}{3}+x\right)\sin \left(\frac{\pi}{3}-x \right)\)
Suy ra:
\(\sin \left(\frac{\pi}{3}+x\right)\sin \left(\frac{\pi}{3}-x \right)=\frac{\cos \frac{2\pi}{3}-\cos 2x}{-2}=\frac{1+2\cos 2x}{4}\)
\(\Rightarrow \text{VT}=4\sin x\sin \left(\frac{\pi}{3}+x\right)\sin \left(\frac{\pi}{3}-x \right)=\sin x(1+2\cos 2x)\)
\(=\sin x(1+\cos 2x+\cos ^2x-\sin ^2x)\)
\(=\sin x(\cos 2x+2\cos ^2x)\)
\(=\sin x\cos 2x+2\cos ^2x\sin x\)
\(=\sin x\cos 2x+\sin 2x\cos x=\sin (x+2x)=\sin 3x\)
Do đó ta có đpcm.
CMR: \(x-x^2-1< 0\forall x\)
\(x-x^2-1\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}-1\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Ta có :
\(-\left(x-\dfrac{1}{2}\right)^2\le0\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}< 0\forall x\)
hay \(x-x^2-1< 0\forall x\)
CMR \(\dfrac{-1}{2}-x^2+x< 0\forall x\)
\(-x^2+x-\dfrac{1}{2}\)
\(=-\left(x^2-x+\dfrac{1}{2}\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}< 0\)
cmr \(-x^2-x-1< 0\forall x\)
-x^ - x - 1 = - (x^2+x+1) = - (x^2+x+1/4+3/4) = - [(x+1/2)^2 +3/4) ]
Ta có [(X+1/2)^2+3/4 lớn hơn hoặc bằng 3/4 => - [(x+1/2)^2+3/4] nhỏ hơn hoặc bằng -3/4 <0
\(-\left(x^2+x+1\right)\Rightarrow-\left[x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\right]\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\Rightarrow-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\Rightarrow\le0\)
Chứng minh các bất đẳng thức sau :
a) \(e^x+\cos x\ge2+x-\dfrac{x^2}{2};\forall x\in\mathbb{R}\)
b) \(e^x-e^{-x}\ge2\ln\left(x+\sqrt{1+x^2}\right);\forall x\ge0\)
c) \(8\sin^2\dfrac{x}{2}+\sin2x>2x;\forall x\in\) (\(0;\pi\)]
Gọi M là giá trị lớn nhất của biểu thức \(S=\sin x+\sin y+\sin\left(3x+y\right)-2\sin\left(2x+y\right).\cos x\) , \(\forall x\in\left(0,2\pi\right),\forall y\in\left(0,2\pi\right)\) . Biết \(M=\dfrac{a\sqrt{b}}{c}\) (Với a,b,c \(\in Z^+,\dfrac{a}{c}\) là phân số tối giản, b < 12). Tính \(P=a+b-c\)
\(S=sinx+siny+sin\left(3x+y\right)-sin\left(3x+y\right)-sin\left(x+y\right)\)
\(=sinx+siny-sin\left(x+y\right)\)
\(S^2=\left(sinx+siny-sin\left(x+y\right)\right)^2\le3\left(sin^2x+sin^2y+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left(1-\dfrac{1}{2}\left(cos2x+cos2y\right)+sin^2\left(x+y\right)\right)\)
\(S^2\le3\left[1-cos\left(x+y\right)cos\left(x-y\right)+1-cos^2\left(x-y\right)\right]\)
\(S^2\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)-\left[cos\left(x-y\right)-\dfrac{1}{2}cos\left(x+y\right)\right]^2\right]\le3\left[2+\dfrac{1}{4}cos^2\left(x+y\right)\right]\)
\(S^2\le3\left(2+\dfrac{1}{4}\right)=\dfrac{27}{4}\)
\(\Rightarrow S\le\dfrac{3\sqrt{3}}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=3\\c=2\end{matrix}\right.\)
Câu 4: CMR: \(\sin x < x\) với \(x > 0\).
Câu 5: CMR: \(\cos x > 1 - \dfrac {x^2}{2}\) với \(x \neq 0\).
CMR:
a,\(x^2+5y^2+2x-4xy-10y+10>0\forall x,y\)
b,\(5x^2+10y^2-6xy-4x-2y+3>0\forall x,y\)
CMR
\(-4+5-x^2< 0\forall x\)
Sửu đề bạn nhé!
Ta có:\(-4+5x-x^2=-\left(x^2-5x+4\right)\)
\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+4\right]\)
\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{9}{4}\)
do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}< 0\) với mọi x
\(\Rightarrow\) điều phải chứng minh