Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nhật Phong
Xem chi tiết
Akai Haruma
22 tháng 11 2023 lúc 20:03

Lời giải:
Đặt $3x+5y=a; x+4y=b$.

Ta có: $2a+b=2(3x+5y)+x+4y=7x+14y=7(x+2y)\vdots 7$

$ab\vdots 7\Rightarrow a\vdots 7$ hoặc $b\vdots 7$

Nếu $a\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow b\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$

Nếu $b\vdots 7$. Khi đó: $2a+b\vdots 7\Rightarrow 2a\vdots 7\Rightarrow a\vdots 7$

$\Rightarrow ab\vdots (7.7)$ hay $ab\vdots 49$
Vậy ta có đpcm.

 

Nguyễn Thị Thanh Tâm
Xem chi tiết
Hoàng Nam Bùi
Xem chi tiết
Trần Phúc
Xem chi tiết
Incursion_03
11 tháng 3 2019 lúc 22:43

\(Pt\Leftrightarrow3x^2+12x+4y^2+3y+5=0\)

Coi pt trên là pt bậc 2 ẩn x 

Ta có : \(\Delta'=36-12y^2-9y-15\)

                 \(=-12y^2-9y+21\)

Pt có nghiệm \(\Leftrightarrow\Delta'=-12y^2-9y+21\ge0\)

                     \(\Leftrightarrow-\frac{7}{4}\le y\le1\)

Mà \(y\inℤ\Rightarrow y\in\left\{-1;0;1\right\}\)

Rồi làm nốt

Vũ Quang Minh
Xem chi tiết
HT.Phong (9A5)
27 tháng 9 2023 lúc 5:25

\(x^2+2y^2-2xy+4y+3< 0\)

\(\Rightarrow x^2-2xy+y^2+y^2+4y+4-1< 0\)  

\(\Rightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)-1< 0\)

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)

Mà: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\forall x,y\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\) 

\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2-1\ge-1\forall x,y\)

Mặt khác: \(\left(x-y\right)^2+\left(y+2\right)^2-1< 0\)

Dấu "=" xảy ra:

\(\left\{{}\begin{matrix}x-y=0\\y+2=0\end{matrix}\right.\)

\(\Rightarrow x=y=-2\)

Vậy: .... 

ĐƯỜNG HÀ LINH:))
Xem chi tiết
Akai Haruma
13 tháng 3 2022 lúc 1:26

Lời giải:

$y^2+2xy-3x-2=0$

$\Leftrightarrow y^2+2xy+x^2=x^2+3x+2$
$\Leftrightarrow (x+y)^2=(x+1)(x+2)$

Dễ thấy với mọi $x\in\mathbb{Z}$ thì $(x+1, x+2)=1$ nên để tích của chúng là scp thì $x+1, x+2$ cũng là scp

Đặt $x+1=a^2; x+2=b^2$ với $a,b\in\mathbb{Z}$
$\Rightarrow 1=b^2-a^2=(b-a)(b+a)$

$\Rightarrow b-a=b+a=1$ hoặc $b-a=b+a=-1$

$\Rightarrow a=0\Rightarrow x=-1$

Khi đó:

$(x+y)^2=(x+1)(x+2)=0$

$\Rightarrow y=-x=1$

Vậy $(x,y)=(-1,1)$

nguyễn bích thuỳ
Xem chi tiết
Ngọc Mai_NBK
14 tháng 8 2021 lúc 21:43

Không mấy tính tổng quát, giải sử x=<y=<z

=>  1/x+1/x+1/x >=1/x +1/y +1/z = 3/5

=>   3/x>=3/5

=>   X=<5

Có 1/x< 3/5; do 1/x +1/y +1/z = 3/5

=>   X>5/3 => x=2,3,4,5

Xét các trường hợp ta thấy chỉ có x=y=z=5 thỏa

Khách vãng lai đã xóa
Ngọc Mai_NBK
14 tháng 8 2021 lúc 21:33

TL: 

X=y=z=5

Khách vãng lai đã xóa
nguyễn bích thuỳ
14 tháng 8 2021 lúc 21:34

bạn ơi giải chi tiết như nào vậy ạ??

Khách vãng lai đã xóa
Thu Thu
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 11 2022 lúc 18:17

x^3-3x^2+5x+2007=0

nên \(x\simeq-11,57\)

y^3-3y^2+5y-2013=0

nên \(y\simeq13,57\)

=>x+y=2

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 1:09

\(\Leftrightarrow4.25^x-4.5^x+1=4y^4+8y^3+12y^2+16y+41\)

\(\Leftrightarrow\left(2.5^x-1\right)^2=4y^4+8y^3+12y^2+16y+41\)

Ta có:

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+2\right)^2+8y+37>\left(2y^2+2y+2\right)^2\)

\(4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2+4\left(y-1\right)\left(3y+4\right)\ge\left(2y^2+2y+5\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+3\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+4\right)^2\\4y^4+8y^3+12y^2+16y+41=\left(2y^2+2y+5\right)^2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y^2-y-8=0\left(\text{không có nghiệm nguyên}\right)\\8y^2-25=0\left(\text{không có nghiệm nguyên}\right)\\\left(y-1\right)\left(3y+4\right)=0\end{matrix}\right.\) 

\(\Rightarrow y=1\)

Thế vào pt ban đầu: \(25^x-5^x=20\)

Đặt \(5^x=t>0\Rightarrow t^2-t-20=0\Rightarrow\left[{}\begin{matrix}t=5\\t=-4\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow5^x=5\Rightarrow x=1\)