Cho tam giác ABC vuông tại A, góc C=30°, BC=12cm, giải tam giác ABC.
Cho tam giác ABC vuông tại A. Giải tam giác vuông ABC trong các trường hợp sau:
a) BC = 10cm,góc C= 30 độ. b) AB=8cm và góc B=30 độ ?
a: \(\widehat{B}=90^0-30^0=60^0\)
XétΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
nên AB=5cm
=>\(AC=5\sqrt{3}\left(cm\right)\)
b: \(\widehat{C}=90^0-30^0=60^0\)
Xét ΔABC vuông tại A có
\(\sin C=\dfrac{AB}{BC}\)
hay \(BC=16\sqrt{3}\left(cm\right)\)
=>\(AC=8\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A,Biết BC=12cm,góc C bằng 30 độ tính độ dài AB?
Cho tam giác ABC vuông tại A có BC = 12cm; góc C = 300
a) Giải chính xác tam giác ABC.
b) Vẽ phân giác BD của góc B (D thuộc AC). Cm: SDBC = 2SDAB
Cho tam giác vuông ABC vuông tại A biết góc C = 30 độ và BC= 12cm. Hỏi số đo góc B bằng bao nhiêu độ
Cho tam giác ABC vuông tại A có AC = 12cm, BC = 13cm. Vẽ tia phân giác BM cửa góc ABC ( M thuộc AC). Từ M kẻ MD vuông góc với BC tại D
a) So sánh các góc của tam giác ABC b) Chứng minh tam giác ABM = tam giác DBM c) Đường thẳng DM cắt tia BA tại K, Chứng minh KD + AB > BCCho tam giác abc vuông tại a,bc=5cm,°C=30° a)giải tam giác vuông ABC. b)tính đường cao AH c)kẻ HE vuông góc AB TẠI E VÀ HF VUÔNG GÓC AC TẠI F CM :AH\3=BE.CF.BC cần gấp
Câu 15:
a: ĐKXĐ: x>=0; x<>1
(Giải tầm giác vuông biết độ dài một cạnh và một góc nhọn)cho tam giác ABC vuông tại C có BC bằng 4cm và A bằng 30 độ a.hãy giải tam giác ABC B.tính tỉ số lượng giác của GÓC A
a: \(\widehat{B}=60^0\)
AB=8cm
\(AC=4\sqrt{3}\left(cm\right)\)
Cho tam giác ABC vuông tại A, AB= 12cm, BC= 20cm. Giải tam giác ABC
Áp dụng định lý Py-ta-go vào tam giác vuông ABC ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)
\(\Rightarrow AC=\sqrt{20^2-12^2}=16\left(cm\right)\)
Mà: \(sinB=\dfrac{AC}{BC}=\dfrac{16}{20}\)
\(\Rightarrow sinB=\dfrac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=180^o-90^o-53^o\approx37^o\)
Cho tam giác ABC vuông tại A có BC=a, CA=b, AB=c. Giải tam giác ABC biết: b=10cm, góc C=30 độ.
Cảm ơn rất nhiều ạ!
Ta có: ΔABC vuông tại A(gt)
nên \(\widehat{B}+\widehat{C}=90^0\)
hay \(\widehat{B}=60^0\)
Xét ΔABC vuông tại A có
\(AB=AC\cdot\tan30^0\)
\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin30^0=\dfrac{AB}{BC}\)
\(\Leftrightarrow BC=\dfrac{10\sqrt{3}}{3}:\dfrac{1}{2}=\dfrac{10\sqrt{3}}{3}\cdot2=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)