Cho x,y,z > 0, xyz = 1
CMR (x+y)(y+z)(x+z) >= 2(1+x+y+z)
Em xin hướng giải thồi ạ em cảm ơn.
Các bác giải giùm em bài này được không ạ???Em xin cảm ơn trước!!!
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
Theo tính chất của dãy tỉ số bằng nhau, ta có
\(\frac{y+z+1}{x}=\frac{x+y+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=\frac{y+z+1+x+y+2+x+y-3+1}{x+y+z+x+y+z}\)
=\(\frac{\left(x+y+z\right)+\left(x+y+y1+2-3\right)}{\left(x+y+z\right)+\left(x+y+z\right)}=\frac{\left(x+y+z\right)+\left(x+y+y+1\right)}{\left(x+y+z\right)+\left(x+y+z\right)}\)
=>x+y+y+1=x+y+z
=>y+1=z
Vậy đáp số cần tìm là x,y,z khác 0
x tùy ý
y tùy ý
z=y+1
Cho x,y,z>0 và xyz=1
CMR: \(x^3+y^3+z^3+3\ge2\left(x^2+y^2+z^2\right)\)
Bài này cực kì chặt nên có lẽ phải sử dụng tới BĐT Schur
Đặt \(x+y+z=p\) ; \(xy+yz+zx=q\)
BĐT cần chứng minh tương đương: \(p^3+4q+6\ge2p^2+3pq\) với \(p;q\ge3\)
TH1: \(p\ge q\)
\(p^3+4q+6-2p^2-3pq\ge0\)
\(\Leftrightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge0\)
Do \(\left\{{}\begin{matrix}p\ge q\\p>2\end{matrix}\right.\) \(\Rightarrow\left(p^2-3q\right)\left(p-2\right)\ge\left(p^2-3p\right)\left(p-2\right)\)
\(\Rightarrow\left(p^2-3q\right)\left(p-2\right)-2\left(q-3\right)\ge\left(p^2-3p\right)\left(p-2\right)-2\left(p-3\right)\)
\(=\left(p-3\right)\left(p^2-2p-2\right)=\left(p-3\right)\left[p\left(p-3\right)+p-2\right]\ge0\)
TH2: \(p\le q\)
Áp dụng BĐT Schur bậc 4:
\(p^4+4q^2+6p\ge5p^2q\Rightarrow p^3+6\ge5pq-\dfrac{4q^2}{P}\)
Do đó ta chỉ cần chứng minh:
\(5pq-\dfrac{4q^2}{p}+4q\ge2p^2+3pq\)
\(\Leftrightarrow p^2q-2q^2+2pq-p^3\ge0\)
\(\Leftrightarrow\left(q-p\right)\left(p^2-2q\right)\ge0\) (đúng)
Cho x;y;z>0 và xyz=1. Tìm giá trị Min của:
1/(x+1)²+1/(y+1)²+1/(z+1)²
Em xin cảm ơn mọi người nhé!
Cho x,y,z>0 và \(2x+4y+3z^2=68\).Tìm MinP=\(x^3+y^3+z^3\)
:< giúp em với ạ, với lại có thể cho eim xin phương pháp để giải mấy bài kiểu vậy với ạ, em cảm ơn
Đây là 1 bài toán không giải được (người ra đề đã chọn 1 con số ngẫu nhiên dẫn tới kết quả phương trình điểm rơi không thể giải)
Dự đoán điểm rơi tại \(x=a;y=b;z=c\)
\(2\left(x^3+a^3+a^3\right)\ge6a^2x\)
\(2\left(y^3+b^3+b^3\right)\ge6b^2y\)
\(z^3+z^3+c^3\ge3cz^2\)
Cộng vế:
\(2P+\left(4a^3+4b^3+c^3\right)\ge3\left(2a^2x+2b^2y+cz^2\right)\)
Ta cần tìm a, b, c sao cho:
\(\left\{{}\begin{matrix}2a+4b+3c^2=68\\\dfrac{2a^2}{2}=\dfrac{2b^2}{4}=\dfrac{c}{3}\\\end{matrix}\right.\) \(\Leftrightarrow2a+4.a\sqrt{2}+3.\left(3a^2\right)^2=68\)
\(\Leftrightarrow27a^4+\left(4\sqrt{2}+2\right)a-68=0\)
Đây là 1 pt bậc 4 không thể giải cho nên đây là 1 BĐT không thể giải.
Thông thường khi cho số liệu thì người ra đề phải tính trước các hệ số để ra 1 pt có thể giải chứ ko random kiểu ngớ ngẩn thế này
Cho x > y > z > 0. Tìm giá trị nhỏ nhất của biểu thức:
P = \(x+12+\dfrac{81}{z\left(x-y\right)\left(y-z\right)}\)
Giải hộ em với ạ!!!
Em cảm ơn
\(P=\left(x-y\right)+\left(y-z\right)+z+\dfrac{81}{z\left(x-y\right)\left(y-z\right)}+12\)
\(P\ge4\sqrt[4]{\left(x-y\right)\left(y-z\right).z.\dfrac{81}{z\left(x-y\right)\left(y-z\right)}}+12=24\)
\(P_{min}=24\) khi \(\left(x;y;z\right)=\left(9;6;3\right)\)
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
a)Chứng minh x3 + y3 ≥xy(x+y) với x,y≥0
b)Cho x,y,z>0 thỏa mãn xyz=1
CMR:\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
Lời giải:
a. Xét hiệu:
$x^3+y^3-xy(x+y)=(x^3-x^2y)-(xy^2-y^3)=x^2(x-y)-y^2(x-y)$
$=(x-y)(x^2-y^2)=(x-y)^2(x+y)\geq 0$ với mọi $x,y\geq 0$
$\Rightarrow x^3+y^3\geq xy(x+y)$
Dấu "=" xảy ra khi $x=y$
b.
Áp dụng BĐT phần a vô:
$x^3+y^3\geq xy(x+y)$
$\Rightarrow x^3+y^3+1\geq xy(x+y)+1=xy(x+y)+xyz=xy(x+y+z)$
$\Rightarrow \frac{1}{x^3+y^3+1}\leq \frac{1}{xy(x+y+z)}=\frac{xyz}{xy(x+y+z)}=\frac{z}{x+y+z}$
Hoàn toàn tương tự với các phân thức còn lại suy ra:
$\text{VT}\geq \frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1$
Ta có đpcm
Dấu "=" xảy ra khi $x=y=z=1$
>n giải giúp mình với, Câu này 0,5 đ trong bài hki của huyện mih
Cho x+y+z=0, xyz#0. TÍnh giá trị của biểu thức
A=\(\frac{x^2}{y^2+z^2-x^2}+\frac{y^2}{z^2+x^2-y^2}+\frac{z^2}{x^2+y^2-z^2}\)
Mình xin cảm ơn
Tiếp tục:\(-A=\frac{x^3+y^3+z^3}{2xyz}\)
thay(1) vào A ta có
\(-A=\frac{y^3+z^3-\left(y+z\right)^3}{2xyz}=\frac{y^3+z^3-y^3-z^3-3yz\left(y+z\right)}{2xyz}\)
\(-A=\frac{3xyz}{2xyz}=\frac{3}{2}\Rightarrow A=\frac{-3}{2}\)
P/s tham khảo bài mình nhé nhớ
ta có:\(x+y+z=0\) \(\Rightarrow x=-\left(y+z\right)\)
\(\Rightarrow x^3=-\left(y+z\right)^3\left(1\right)\)\(;x^2=\left(y+z\right)^2\)
\(\Rightarrow y^2+z^2-x^2=-2yz\)
CMTT:\(z^2+x^2-y^2=-2xz;x^2+y^2-z^2=-2xy\)
thay vào A ta có:
\(A=\frac{-x^2}{2yz}+\frac{-y^2}{2xz}+\frac{-z^2}{2xy}\)
Cho x;y;z>0 và xyz=1.
Tìm giá trị nhỏ nhất của biểu thức:
A=1/(x+1)²+1/(y+1)²+1/(z+1)²
Em cảm ơn mọi người ạ!
Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
CM BĐT là đúng: ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
<=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
<=> \(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\ge9\)
<=> \(\left(\frac{a}{b}+\frac{b}{a}-2\right)+\left(\frac{b}{c}+\frac{c}{b}-2\right)+\left(\frac{a}{c}+\frac{c}{a}-2\right)\ge0\)
<=> \(\frac{\left(a-b\right)^2}{ab}+\frac{\left(b-c\right)^2}{bc}+\frac{\left(a-c\right)^2}{ac}\ge0\) (luôn đúng với mọi x,y,z > 0)
Khi đó: A = \(\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(y+1\right)^2}+\frac{1}{\left(z+1\right)^2}\ge\frac{9}{\left(x+1\right)^2+\left(y+1\right)^2+\left(z+1\right)^2}\)
<=> A \(\ge\frac{9}{x^2+2x+1+y^2+2y+1+z^2+2z+1}=\frac{9}{x^2+y^2+z^2+2\left(x+y+z\right)+3}\)
Áp dụng bdt cosi cho bộ ba số dương x2, y2 và z2 ; x, y và z (vì x,y,z > 0)
Ta có: \(x^2+y^2+z^2\ge3\sqrt[3]{x^2y^2z^2}=3\sqrt[3]{\left(xyz\right)^2}=3\) (vì xyz = 1)
\(x+y+z\ge3\sqrt[3]{xyz}=3\)
=> \(2\left(x+y+z\right)\ge6\)
=> \(x^2+y^2+z^2+2\left(x+y+z\right)+3\ge3+6+3=12\)
hay A \(\ge\)12
Dấu "=" xảy ra <=> x = y = z = 1
Vậy MinA = 12 khi x = y = z = 1
Xin lỗi cô k nhầm!
Bài của em dòng thứ 10 bắt đầu áp dụng cô si là sai rồi. Bị ngược dấu và đáp án cũng không đúng.
Cho x,y,z>0 :xyz=1
cmr:\(\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{z^2+2x^2+3}+\dfrac{1}{y^2+2z^2+3}\le\dfrac{1}{2}\)
lớp 10 rồi ....... khá là khó
\(x^2+2y^2+3=x^2+y^2+y^2+1+2\ge2xy+2y+2\)
\(z^2+2x^2+3\ge2zx+2x+2\)
\(y^2+2z^2+3\ge2yz+2z+2\)
Dễ chứng minh được \(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}=1\)
\(\Rightarrow\dfrac{1}{x^2+2y^2+3}+\dfrac{1}{z^2+2x^2+3}+\dfrac{1}{y^2+2z^2+3}\)
\(\le\dfrac{1}{2}\left(\dfrac{1}{xy+y+1}+\dfrac{1}{yz+z+1}+\dfrac{1}{zx+x+1}\right)=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(x=y=z=1\)