tìm x
( x +0,1 ) x ( x - \(\dfrac{2}{7}\) )= 0
Tìm x , biết
\(\dfrac{0,1\left(6\right)+0,\left(3\right)}{0,\left(3\right)+1,1\left(6\right)}\)\(\times\) x =\(0,\left(2\right)\) ( giải thích ra nha )
giúp mik vs 4h 30 ) hc rồi
tìm x, biết:
e) \(\dfrac{2}{7-x}\)=\(\dfrac{18}{45}\) f)\(\dfrac{2x+3}{3}\)=\(\dfrac{50}{15}\) g)\(2\dfrac{x}{7}\)=\(\dfrac{75}{35}\) h)\(2\dfrac{3}{x}\)=\(\dfrac{13}{x}\)(x khác 0)
e: =>2/7-x=2/5
=>7-x=5
=>x=2
f: =>2x+3/3=10/3
=>2x+3=10
=>2x=7
=>x=7/2
g: =>(14+x)/7=15/7
=>x+14=15
=>x=1
h: =>(2x+3)/x=13/x
=>2x+3=13
=>2x=10
=>x=5
tìm x:
a)\(\dfrac{-3}{x+5}< 0\) b)\(\dfrac{2x+1}{7}< 0\) c)x\(^2\) - 5x + 4 >0 d)\(\dfrac{x+1}{x-1}< 1\)
a) 1\(\dfrac{2}{3}\). b)\(\dfrac{1}{7}\). c) 1 d )0
a: =>x+5>0
hay x>-5
b: =>2x+1<0
hay x<-1/2
c: =>(x-1)(x-4)>0
=>x>4 hoặc x<1
a) x>-5 ĐKXĐ x\(\ne\)-5
b)x<\(-\dfrac{1}{2}\)
c)x>4 hoặc x<1
d)ĐKXĐ x\(\ne\)1, ko tìm đc x
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: x > 0). Tìm x nguyên để \(\dfrac{A}{B}< \dfrac{7}{4}\).
\(P=\dfrac{A}{B}=\sqrt{x}+1\)
P<7/4
=>căn x<3/4
=>0<x<9/16
a, Cho x, y, z > 0 \(\in[0,1]\). Chứng minh:
\(\dfrac{x}{yz+1}+\dfrac{y}{xz+1}+\dfrac{z}{xy+1}< 2\)
b, x, y, z > 0 : xyz = 1. Chứng minh:
\(\dfrac{1}{x^2+2y+3}+\dfrac{1}{y^2+2z^2+3}+\dfrac{1}{z^2+2x^2+3}\le2\)
\(P=\dfrac{2x+2}{\sqrt{x}}+\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x^2+\sqrt{x}}{x\sqrt{x}+x}\) \(\left(x>0;x\ne1\right)\)
Tìm x để \(\dfrac{7}{P}\) nguyên
Rút gọn biểu thức P ta được \(P=\dfrac{2\left(x+\sqrt{x}+1\right)}{\sqrt{x}}\)
\(\Rightarrow\dfrac{7}{P}=\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}\)
Ta có \(\left\{{}\begin{matrix}\sqrt{x}>0\\x+\sqrt{x}+1>0\end{matrix}\right.\) \(\Rightarrow\dfrac{7}{P}>0\)
Lại có: \(\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}=\dfrac{4\left(x+\sqrt{x}+1\right)-4x+3\sqrt{x}-4}{2\left(x+\sqrt{x}+1\right)}=2-\dfrac{4x+3\sqrt{x}+4}{2\left(x+\sqrt{x}+1\right)}< 2\)
\(\Rightarrow0< \dfrac{7}{P}< 2\)
Mà \(\dfrac{7}{P}\) nguyên \(\Rightarrow\dfrac{7}{P}=1\)
\(\Rightarrow\dfrac{7\sqrt{x}}{2\left(x+\sqrt{x}+1\right)}=1\Rightarrow2x+2\sqrt{x}+2=7\sqrt{x}\)
\(\Rightarrow2x-5\sqrt{x}+2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=2\\\sqrt{x}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)
7. P = \(\dfrac{x+\sqrt{x}}{\sqrt{x}-1}\) tìm x để P< 1 với x ≥ 0 , x ≠ 4
8. P = \(\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\) tìm x để P < 1/4 với x≥0, x ≠ 1
8: Để \(P< \dfrac{1}{4}\) thì \(P-\dfrac{1}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{\sqrt{x}+1}< 0\)
\(\Leftrightarrow3\sqrt{x}< 9\)
hay x<9
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}0\le x< 9\\x\ne1\end{matrix}\right.\)
7.
\(P< 1\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}< 1\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}}{\sqrt{x}-1}-1< 0\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\dfrac{x+1}{\sqrt{x}-1}< 0\)
\(\Leftrightarrow\sqrt{x}-1< 0\)
\(\Leftrightarrow x< 1\)
Vậy \(0\le x< 1\)
8.
\(P< \dfrac{1}{4}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}+1}< \dfrac{1}{4}\)
\(\Leftrightarrow4\left(\sqrt{x}-2\right)< \sqrt{x}+1\)
\(\Leftrightarrow4\sqrt{x}-8< \sqrt{x}+1\)
\(\Leftrightarrow3\sqrt{x}< 9\)
\(\Leftrightarrow x< 9\)
Vậy \(0\le x< 9;x\ne1\)
Cho A = \(\dfrac{x+2\sqrt{x}}{x}\); B = \(\dfrac{\sqrt{x}+2}{\sqrt{x}+1}\)(ĐKXĐ: X > 0). Tìm x để biểu thức \(\dfrac{A}{B}< \dfrac{7}{4}\) nguyên.
đk x > 0
\(\dfrac{A}{B}=\dfrac{\dfrac{x+2\sqrt{x}}{x}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\dfrac{\sqrt{x}+2}{\sqrt{x}}}{\dfrac{\sqrt{x}+2}{\sqrt{x}+1}}=\dfrac{\sqrt{x}+1}{\sqrt{x}}-\dfrac{7}{4}< 0\)
\(\Leftrightarrow\dfrac{4\sqrt{x}+4-7\sqrt{x}}{4\sqrt{x}}< 0\Leftrightarrow\dfrac{-3\sqrt{x}+4}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3\sqrt{x}+4\ne0\\-3\sqrt{x}+4< 0\\4\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\dfrac{16}{9}\\x< \dfrac{16}{9}\\x\ne0\end{matrix}\right.\)
Tìm x :
1) \(\left(-0,75x+\dfrac{5}{2}\right).\dfrac{4}{7}-\left(-\dfrac{1}{3}\right)=-\dfrac{5}{6}\)
2) \(\left(4x-9\right)\left(2,5+\dfrac{-7}{3}x\right)=0\)
3) \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
4)\(\left(\dfrac{3}{5}-\dfrac{2}{3}x\right)^3=\dfrac{-64}{125}\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)