Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hồ Thị Thùy Linh
Xem chi tiết
28 . Phạm Tài Đức Pháp
13 tháng 10 2021 lúc 9:04

TL

Đáp án:

Giải thích các bước giải:a. ta có: N là trung điểm của AC

a. M là trung điểm của BC

=> MN là đường TB của ∆CAB

=> MN // AB => ME//AB

c. AE // BM

AB//EM

=> AEMB là hình bình hành

=> AE=BM=> AE=MC

HT

Khách vãng lai đã xóa
🐇Usagyuuun🐇
13 tháng 10 2021 lúc 9:04
 

Lai hộ cái

a) ΔABC cân tại A mà AM là đường cao BC

→AM là trung tuyến BC (tính chất các đường đồng quy Δ cân)

→M là trung điểm BC

mà N là trung điểm AC

→MN là đường trung bình ΔABC

→MN//AB hay ME//AB

b) Ax//BC

→AE//CM

→A1^=C1^ (so le trong)

Xét ΔANE và ΔCNM:

A1^=C1^(cmt)

AN=CN (N là trung điểm AC)

ANE^=CNM^ (đối đỉnh)

→ΔANE=ΔCNM(g−c−g)

→AE=MC (2 cạnh tương ứng)

c) AM là đường cao BC

→AM⊥BC mà Ax//BC

→Ax⊥AM

image 
Khách vãng lai đã xóa
Đỗ Thị Hải Yến
Xem chi tiết
Huyền Đàm
Xem chi tiết
Phạm Thị Trà My
Xem chi tiết
HUYNH NGOC VINH
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 8 2023 lúc 13:52

a: Xét ΔAMN có

Ax vừa là đường cao, vừa là phân giác

=>ΔAMN cân tại A

b: BE//AC

=>góc BEM=góc ANE

=>góc BEM=góc BME

=>BE=BM

Xét ΔDEB và ΔDNC có

góc DBE=góc DCN

DB=DC

góc BDE=góc NDC

=>ΔDEB=ΔDNC

=>BE=NC

=>BE=CN

Chi Nguyễn
Xem chi tiết
Nguyễn Phương Uyên
29 tháng 2 2020 lúc 20:46

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (đl)

góc ACB = góc ECN (đối đỉnh)

=> góc ABC  = góc ECN 

xét tam giác BDM và tam giác ECN có : BD = CE (gt)

góc MDB = góc CEN = 90

=> tam giác BDM = tam giác ECN (cgv-gnk)

=> DM = EN (đn)

b, MD _|_ BC (gt)

NE _|_ BC (gT)

=> MD // EN (Đl)

=> góc DMI = góc INE (slt)

xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI  = 90

MD = EN (Câu a)

=>  tam giác DMI = tam giác ENI (cgv-gnk)

=> DI = IE (đn) mà I nằm giữa D và E 

=> I là trđ của DE (đn)

c, xét tam giác ABO và tam giác ACO có : AO chung

AB = AC do tam giác ABC cân tại A (gT)

góc ABO = góc ACO = 90

=> tam giác ABO = tam giác ACO (ch-cgv)

=> BO = CO (đn) 

=> O thuộc đường trung trực của BC (đl)

AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)

=> AO là trung trực của BC

Khách vãng lai đã xóa
Agatsuma Zenitsu
29 tháng 2 2020 lúc 20:56

Hình tự vẽ nha.

a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:

\(CE=BD\left(gt\right)\)

\(\widehat{NEC}=\widehat{MDB}=90^0\)

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)

\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)

b, Xét \(\Delta MID\)và \(\Delta NIE\) có:

\(\widehat{MDI}=\widehat{NEI}=90^0\)

\(EN=MD\left(cmt\right)\)

\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)

\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)

\(\Rightarrow I\) là giao điểm của \(DE\)

c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:

\(AB=AC\)

\(\widehat{ABO}=\widehat{ACO}=90^0\)

\(AO\) là cạnh chung

\(\Rightarrow\text{​​}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)

\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow AO\) là đường trung trực của \(BC\)

Khách vãng lai đã xóa
Lê Tiến Thành
Xem chi tiết
Minh Hiếu
19 tháng 1 2022 lúc 19:27

Em xem lại đề nha 

AH là đường cao thì H∈BC

mà AM⊥BC(M∈BC)

⇒ H trùng M rồi

Lê Tiến Thành
Xem chi tiết
Minhphuong
Xem chi tiết
Lấp La Lấp Lánh
3 tháng 10 2021 lúc 18:17

a) Xét tam giác ABC có:

M là trung điểm BC(gt)

ME//AC(gt)

=> E là trung điểm AB

Xét tam giác ABC có:

M là trung điểm BC(gt)

MF//AB(gt)

=> F là trung điểm AC

Xét tam giác ABC có:

E là trung điểm AB(cmt)

F là trung điểm AC(cmt)

=> EF là đường trung bình

b) Xét tam giác ABC cân tại A có:

AM là đường trung tuyến(M là trung điểm BC)

=> AM là đường trung trực BC

=> AM⊥BC

Mà EF//BC(EF là đường trung bình)

=> EF⊥AM

Mà \(AE=AF=\dfrac{1}{2}AB=\dfrac{1}{2}AC\)

=> AM là đường trung trực EF