so sánh các lũy thừa sau :
a) 523 và 6.522
b) 7.213 và 216
c)8.145 và 8.113
So sánh các số sau số nào lớn hơn
a)523 và 6.522
b)7.213 và 216
c)2115 và 275.498
a: 5^23=5*5^22<6*5^22
=>6*5^22 lớn hơn
b: 7<8
=>7*2^13<8*2^13=2^16
=>2^16 lớn hơn
c: 21^15=3^15*7^15
27^5*49^8=3^15*7^16
mà 15<16
nên 27^5*49^8 lớn hơn
a) Ta có:
5²³ = 5.5²²
Do 6 > 5 nên 6.5²² > 5.5²²
Vậy 6.5²² > 5²³
b) Ta có:
2¹⁶ = 2³.2¹³ = 8.2¹³
Do 8 > 7 nên 8.2¹³ > 7.2¹³
Vậy 2¹⁶ > 7.2¹³
c) Ta có:
21¹⁵ = (3.7)¹⁵ = 3¹⁵.7¹⁵
27⁵.49⁸ = (3³)⁵.(7²)⁸ = 3¹⁵.7¹⁶
Do 16 > 15 nên 7¹⁶ > 7¹⁵
⇒ 3¹⁵.7¹⁶ > 3¹⁵.7¹⁵
Vậy 27⁵.49⁸ > 21¹⁵
Bài 1: So sánh các số sau? (n thuộc N* )
a) 2711 và 818.
b) 6255 và 1257
c) 536 và 1124
d) 32n và 23n
Bài 2: So sánh
a) 523 và 6.522
b) 7.213 và 216
c) 2115 và 275.498
sorry nghe h tớ gửi quá 100 tin nhắn nên nó ko cho gửi
Bài 1
a)2711>818
b)6255>1257
c)536<1124
d)32n>23n
Bài 2
a)523<6.522
b)7.213>216
c)2115<275.498
bạn ơi bạn viết rõ hơn đi số mũ bạn bấm shift 6
Bài 5: So sánh các lũy thừa sau a) 3mũ21 và 2mũ31 b) 2mũ300 và 3mũ200 c) 32mũ9 và 18mũ13
Lời giải:
a.
\(3^{21}=3.3^{20}=3.9^{10}\)
\(2^{31}=2.2^{30}=2.(2^3)^{10}=2.8^{10}\)
Mà $3.9^{10}> 2.8^{10}$ nên $3^{21}> 2^{31}$
b.
$2^{300}=(2^3)^{100}=8^{100}$
$3^{200}=(3^2)^{100}=9^{100}$
Mà $8^{100}< 9^{100}$ nên $2^{300}< 3^{200}$
c.
$32^9=(2^5)^9=2^{45}$
$18^{13}> 16^{13}=(2^4)^{13}=2^{52}$
Mà $2^{45}< 2^{52}$ nên $32^9< 18^{13}$
so sánh các lũy thừa sau a, 625 mũ 5 và 125 mũ 7 b, 3 mũ 2n và 2 mũ 3n
6255 và 1257
a, 6255 = (54)5 = 520
1257 = (53)7 = 521
Vì 520 < 521 nên 6255 < 1257
b, 32n = (32)n = 9n
23n = (23)n = 8n
9n > 8n ( nếu n > 0)
9n = 8n (nếu n = 0)
Vậy nếu n = 0 thì 23n = 32n
nếu n > 0 thì 32n > 23n
a) \(625^5=\left(5^4\right)^5=5^{20}\)
\(125^7=\left(5^3\right)^7=5^{21}>5^{20}\)
\(\Rightarrow625^5< 125^7\)
b) \(3^{2n}=9^n\)
\(2^{3n}=8^n< 9^n\)
\(\Rightarrow3^{2n}>2^{3n}\)
so sánh các lũy thừa sau
3^18 và 26.3^15
giúp mình với
so sánh các lũy thừa sau 125^79 và 625^60
giúp mik với,thanks
ta có:
12579=(53)79
62560=(54)60
=>53<54 =>(53)79<(54)60
=>12579<62560
lâu rồi ko lm ko bt đúng ko
Ta có: \(125^{79}=\left(5^3\right)^{79}=5^{237}\)
\(625^{60}=\left(5^4\right)^{60}=5^{240}\)
Vì \(5^{237}< 5^{240}\)nên \(125^{79}< 625^{60}\)
\(125^{79}=\left(5^3\right)^{79}=5^{237}\)
\(625^{60}=\left(5^4\right)^{60}=5^{240}\)
mà \(5^{237}< 5^{240}\)
nên \(125^{79}< 625^{60}\)
so sánh các lũy thừa sau : 3^200 và 2^333
So sánh các lũy thừa sau
a, 172 và 152
so sánh về lũy thừa .
nếu 2 lũy thừa cùng mũ số thì số nào có cơ số lơn hơn thì số đó lớn hơn .
nếu 2 cơ số bằng nhau thì ta so sánh phần mũ số , số nào có mũ số bé hơn thì số đó bé hơn
nếu 2 lũy thừa có cơ số và mũ số giống nhau thì 2 lũy thừa đó bằng nhau .
.................................
áp dụng công thức trên thì :
172 > 152
đây là phần đầu của lớp 6 ( số học )
So sánh 2 lũy thừa :
\(17^2;15^2\)
Vì số mũ đã bằng nhau :
Ta so sánh :
\(17>15\)
\(\Rightarrow17^2>15^2\)
So sánh các lũy thừa sau:
3^39 và 11^21
1.So sánh các lũy thừa sau:
a, 27^81 và 81^27
b, 5^60 và 7^40
c, 99^50 và 11^102
d, 12^34567 và 34567^12
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
so sánh b=(12^5)^12=248832^12 với c=34567^12 => b>c