tìm x biết
\(\sqrt{4-x}\)=x-2
Tìm số x không âm , biết :
a) \(\sqrt{x}\)= 15
b) \(2\sqrt{x}\)= 14
c) 2\(2\sqrt{x}\) < 4
\(a.\sqrt{x}=15\)
\(\Leftrightarrow x=15^2=225\)
\(b.2\sqrt{x}=14\)
\(\Leftrightarrow\sqrt{x}=7\)
\(\Leftrightarrow x=7^2=49\)
\(c.22\sqrt{x}< 4\)
\(\Leftrightarrow\sqrt{x}< \dfrac{2}{11}\)
\(\Leftrightarrow x< \left(\dfrac{2}{11}\right)^2\)
\(\Leftrightarrow x< \dfrac{4}{121}\)
Tìm x biết: \(\sqrt{4-x^2}=\sqrt{x+2}\)
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\)
Giúp mình với!Mình đang cần gấp
\(\sqrt{4-x^2}=\sqrt{x+2}\) (ĐK: \(-2\le x\le2\))
\(\Leftrightarrow4-x^2=x+2\)
\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow x^2+2x-x-2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
_______
\(\sqrt{9x^2-4}=2\sqrt{3x-2}\) (ĐK: \(x\ge\dfrac{2}{3}\))
\(\Leftrightarrow9x^2-4=4\left(3x-2\right)\)
\(\Leftrightarrow9x^2-4=12x-8\)
\(\Leftrightarrow9x^2-12x+4=0\)
\(\Leftrightarrow\left(3x-2\right)^2=0\)
\(\Leftrightarrow3x=2\)
\(\Leftrightarrow x=\dfrac{2}{3}\left(tm\right)\)
Mk đag cần gấp mn giúp mk vs ạ !
Câu 1 Tìm x , biết
a)\(\sqrt{4\text{x}^2+4\text{x}+1}=6\)
b)\(\sqrt{4\text{x}^2-4\sqrt{7}x+7=\sqrt{7}}\)
c\(\sqrt{x^2+2\sqrt{3}x+3}=2\sqrt[]{3}\)
d)\(\sqrt{\left(x-3\right)^2}=9\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left(2x+1\right)^2=6^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(\sqrt{4x^2-4\sqrt{7}x+7}=\sqrt{7}\)
\(\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left(2x-\sqrt{7}\right)^2=\left(\sqrt{7}\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt[]{7}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
a) \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
b) \(pt\Leftrightarrow\sqrt{\left(2x-\sqrt{7}\right)^2}=\sqrt{7}\)
\(\Leftrightarrow\left|2x-\sqrt{7}\right|=\sqrt{7}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\sqrt{7}=\sqrt{7}\\2x-\sqrt{7}=-\sqrt{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=0\end{matrix}\right.\)
c) \(PT\Leftrightarrow\sqrt{\left(x+\sqrt{3}\right)^2}=2\sqrt{3}\)
\(\Leftrightarrow\left|x+\sqrt{3}\right|=2\sqrt{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\sqrt{3}=2\sqrt{3}\\x+\sqrt{3}=-2\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-3\sqrt{3}\end{matrix}\right.\)
d) \(pt\Leftrightarrow\left|x-3\right|=9\Leftrightarrow\left[{}\begin{matrix}x-3=-9\\x-3=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-6\\x=12\end{matrix}\right.\)
Tìm x>0 biết x +\(\sqrt{x^2+2}=\sqrt{x+4}+\sqrt{x+2}\)
Tìm x biết :
a) \(\sqrt{9x}+\sqrt{x}=12\)
b) \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
c) \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
Nếu chưa quen giải toán căn thức, em tìm ĐKXĐ cho x, rồi đặt \(\sqrt{x}=t\ge0\Rightarrow x=t^2\) rồi thế vào giải là nó ra 1 pt bình thường theo biến t thôi
a) Ta có: \(\sqrt{9x}+\sqrt{x}=12\)
\(\Leftrightarrow4\sqrt{x}=12\)
\(\Leftrightarrow\sqrt{x}=3\)
hay x=9
b) Ta có: \(\dfrac{\sqrt{x}+3}{4}=\dfrac{\sqrt{x}}{3}\)
\(\Leftrightarrow4\sqrt{x}=3\sqrt{x}+9\)
\(\Leftrightarrow\sqrt{x}=9\)
hay x=81
c) Ta có: \(\dfrac{5\sqrt{x}-x}{\sqrt{x}}=2\)
\(\Leftrightarrow5\sqrt{x}-x=2\sqrt{x}\)
\(\Leftrightarrow x-5\sqrt{x}+2\sqrt{x}=0\)
\(\Leftrightarrow x-3\sqrt{x}=0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-3\right)=0\)
hay x=9
1. Cho A=\(\frac{3}{2+\sqrt{2x-x^2}+3}\)
a. Tìm x để A có nghĩa
b. Tìm Min(A), Max(A)
2/ Tìm Min, Max của: \(A=\frac{1}{2+\sqrt{x-x^2}}\)
3/ Tìm Min(B) biết: \(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}\)
4/ Tìm Min, Max của:\(C=\frac{4x+3}{x^2+1}\)
5/ Tìm Max của: \(A=\sqrt{x-1}+\sqrt{y-2}\)biết \(x+y=4\)
6/ Tìm Max(B) biết: \(B=\frac{y\sqrt{x-1}+x\sqrt{y-2}}{xy}\)
7/ Tìm Max(C) biết: \(C=x+\sqrt{2-x}\)
tích mình với
ai tích mình
mình tích lại
thanks
Tìm x biết \(\sqrt{x-2+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}}=4\)
ĐKXĐ : \(x\ge3\)
\(\sqrt{x-2+2\sqrt{x-3}}+\sqrt{x+6+6\sqrt{x-3}}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}+1\right)^2}+\sqrt{\left(\sqrt{x-3}+3\right)^2}=4\)
\(\Leftrightarrow\sqrt{x-3}+1+\sqrt{x-3}+3=4\)
\(\Leftrightarrow2\sqrt{x-3}=0\Leftrightarrow x=3\)(TMĐK)
cho biểu thức C=\(\dfrac{x}{\sqrt{x}-3}\) với x>0 x≠4 x≠9
Tìm x biết \(\left(2\sqrt{2}+C\right)\sqrt{x}-3C=3x-2\sqrt{x-1}+2\)
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
\(a,\Leftrightarrow x-1=4\Leftrightarrow x=5\\ b,\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\3x+1=4x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{3}{4}\\x=4\left(tm\right)\end{matrix}\right.\Leftrightarrow x=4\\ c,ĐK:x\ge-5\\ PT\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\\ \Leftrightarrow3\sqrt{x+5}=6\\ \Leftrightarrow\sqrt{x+5}=3\\ \Leftrightarrow x+5=9\\ \Leftrightarrow x=4\left(tm\right)\)
\(d,\Leftrightarrow\sqrt{\left(x-2\right)^2}=\sqrt{\left(\sqrt{5}+1\right)^2}\\ \Leftrightarrow\left|x-2\right|=\sqrt{5}+1\\ \Leftrightarrow\left[{}\begin{matrix}x-2=\sqrt{5}+1\\2-x=\sqrt{5}+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{5}+3\\x=1-\sqrt{5}\end{matrix}\right.\)
tìm x biết a,\(\sqrt{x^2-4x+4}=7\) b,\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\sqrt{9x+27}=6\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2-4x+4}=7\)
=>\(\sqrt{\left(x-2\right)^2}=7\)
=>|x-2|=7
=>\(\left[{}\begin{matrix}x-2=7\\x-2=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=-5\end{matrix}\right.\)
b: ĐKXĐ: x>=-3
\(\sqrt{4x+12}-3\sqrt{x+3}+\dfrac{4}{3}\cdot\sqrt{9x+27}=6\)
=>\(2\sqrt{x+3}-3\sqrt{x+3}+\dfrac{4}{3}\cdot3\sqrt{x+3}=6\)
=>\(3\sqrt{x+3}=6\)
=>\(\sqrt{x+3}=2\)
=>x+3=4
=>x=1(nhận)