CHo A=2+2 mũ2+2 mũ3+.....+2 mũ 2020+2 mũ 2021+ 2 mũ 2022 Chứng tỏ rằng A chia hết cho 3
A=3 mũ 2022-2 mũ 2022+3 mũ 2020-2 mũ 2020. Chứng minh rằng A chia hết cho 10
\(A=3^{2022}-2^{2022}+3^{2020}-2^{2020}\\=(3^{2022}+3^{2020})-(2^{2022}+2^{2020})\\=3^{2020}\cdot(3^2+1)-2^{2020}\cdot(2^2+1)\\=3^{2020}\cdot10-2^{2019}\cdot2\cdot5\\=3^{2020}\cdot10-2^{2019}\cdot10\)
Ta có: \(\left\{{}\begin{matrix}3^{2020}\cdot10⋮10\\2^{2019}\cdot10⋮10\end{matrix}\right.\)
\(\Rightarrow3^{2020}\cdot10-2^{2019}\cdot10⋮10\)
hay \(A⋮10\) (đpcm)
\(\text{#}Toru\)
Sáng mai mình cần rùi
moij người có thể giúp mình vài bài đc ko ạ
Camr ơn mọi người nhiều
Baif 1
a) (-2004-2004-2004-2004).(-25)
b) 32-42(-16)+48.5
c) (-15-12):9+5-13.(-2)+(-64):8
Bài 2
a) (3-2x) mũ 2 =169
b) (x-2) mũ 3 =-8
c) (x mũ 2 +1) .x mũ 2=0
Bài 3 : Chứng tỏ rằng
a) 1+4+4 mũ2 +4 mũ3 +......+4 mũ 2000 chia hết cho 21
b) 2+2 mũ2 +2 mũ3+.....+2 mũ100 chia hết cho 31
c) 5+5 mũ2+5 mũ3+....+5 mũ100 chia hết cho 6
cho S= 5+5 mũ 2+ 5 mũ 3+......+5 mũ 2020+ 5 mũ 2021. Chứng tỏ rằng 4*S+5=5 mũ 2022
S= 5+52+53+...+52020+52021
5S=52+53+54+...+52021+52022
5S - S=4S=52022-5
Ta có: 4S+5=52022
=4S -5 +5 =52022
=> 4S=52022
cho A = 1 + 3 + 3 mũ 2 + 3 mũ 3 + ....+3 mũ 2020 + 3 mũ 2021 . chứng minh rằng A chia hết cho 13
A=(1+3+32)+(33+34+35)+...+(32019+32020+32021) A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)
A=13+33.13+...+32019.13
A=13.(1+33+...+32019)chia hết cho 13
=>A chia hết cho 13
a. chứng tỏ rằng : A = 1+ 2 +2 mũ 3 + 2 mũ 4 + ........+ 2 mũ 29 chia hết cho 7
b. chứng tỏ rằng : A = 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +......+ 2 mũ 90 chia hết cho 21
Tôi tên là Ngọc Anh . Năm nay Tôi 11 tuổi. Tôi không biết bài này
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
Bài 2: a) Cho A = 2 + 2 mũ 2 + 2 mũ 3 + …+ 2 mũ 20 + 2 mũ 21 . Chứng minh: A chia hết cho 7. b) Cho S = 3+3 mũ 2 + 3 mũ 3 + ... + 3 9 . Chứng tỏ rằng S chia hết cho 13
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
so sánh
A=2 mux0+2 mũ 1+2 mũ 2+2 mũ 3+...+2 mũ 2020 và B=2 mũ 2021-1
A=2021.2020 và B=2020 mũ2
A=10 mux30 và B=2 mũ100