75 , tính giá trị của x+y biết :
x^3 + y^3 + 4xy = x^2 + y^2 + 4
Bài 4: Chứng minh rằng
a) (x-y)2+4xy=(x+y)2
b) Tính giá trị của biểu thức (x+y)2 biết x-y=5; xy=3
a) Ta có:
VT = (x - y)² + 4xy
= x² - 2xy + y² + 4xy
= x² + 2xy + y²
= (x + y)²
= VP
b) Ta có:
(x + y)² = (x - y)² + 4xy
= 5² + 4.3
= 25 + 12
= 37
a) tính giá trị của biểu thức: x^2+2y tại x=2, y= –3 b) tính giá trị của biểu thức: x^2+2xy+y^2 tại x=4, y=6 c) tính giá trị của biểu thức: P= x^2-4xy+4y^2 tại x=1 và y= 1/2
a: Khi x=2 và y=-3 thì \(x^2+2y=2^2+2\cdot\left(-3\right)=4-6=-2\)
b: \(A=x^2+2xy+y^2=\left(x+y\right)^2\)
Khi x=4 và y=6 thì \(A=\left(4+6\right)^2=10^2=100\)
c: \(P=x^2-4xy+4y^2=\left(x-2y\right)^2\)
Khi x=1 và y=1/2 thì \(P=\left(1-2\cdot\dfrac{1}{2}\right)^2=\left(1-1\right)^2=0\)
a) Cho x+ y = 7. Tính giá trị của biểu thức sau : M = ( x + y )^3 + 2x^2 + 4xy + 2 y^2
b) Cho x - y = -5. Tính giá trị của : N = ( x - y )^3 - x^2 + 2xy - y^2
a) \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=7^3+2\left(x^2+2xy+y^2\right)\)
\(=343+2\left(x+y\right)^2\)
\(=343+2.7^2\)
\(=343+98=441\)
b) \(N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(-5\right)^3-\left(x-y\right)^2\)
\(=-125-\left(-5\right)^2\)
\(=-125-25=-150\)
\(a,M=\left(x+y\right)^3+2x^2+4xy+2y^2\)
\(=\left(x+y\right)^3+2\left(x^2+2xy+y^2\right)\)
\(=\left(x+y\right)^3+2\left(x+y\right)^2\)
\(=\left(x+y\right)^2\left(x+y+2\right)=7^2.9=49.9=441\)
\(b,N=\left(x-y\right)^3-x^2+2xy-y^2\)
\(=\left(x-y\right)^3-\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3-\left(x-y\right)^2\)
\(=\left(x-y\right)^2.\left(x-y-1\right)\)
\(=\left(-5\right)^2\left(-5-1\right)=15.-6=-150\)
Tính giá trị của biểu thức
(x^3+y^3)-(x^2+y^2)+4xy biet x+y=2
\(\Rightarrow\)(x3+y3)+(x2+4xy+y2)
\(\Rightarrow\)(x+y)3+(x+y)2
\(\Rightarrow\)23+22
\(\Rightarrow\)=\(12\)
Tính giá trị của biểu thức
(x^3+y^3)-(x^2+y^2)+4xy biet x+y=2
=> = .........
Tìm giá trị của đa thức biết x - y = 3
x^3 - y^3 - 4xy + y^2 - 35 - 3xy(x -y) + 2x^2
Tính giá trị biểu thức sau:(/ là giá trị tuyệt đối)
A=x^3-4xy+y^2 biết /x-1/+2/2y+4/=0
B=4xy-y^4 biết 3/x-1/+(y-2)^2 < hoặc =0
C=\(\frac{x.y^2-y.x^2}{3xy}\)biết /x-y/=2016
D=x^4-3x+2 với /x-5/=7
E=6x^2+4x-7 với /x-5/=/3x+7/
F=3x^2+2x với /7-2x/=x-3
mn giúp e với ak e cảm ơn trước
Cho hàm số y = f(x) = \(ax^2\). Biết rằng khi \(x=5\) thì \(y=\dfrac{75}{2}\)
a) Tính giá trị của y khi \(x=-3\).
b) Tìm các giá trị của x khi \(y=15\)
a: f(5)=75/2
=>\(a\cdot5^2=\dfrac{75}{2}\)
=>\(a=\dfrac{75}{2}:25=\dfrac{3}{2}\)
Vậy: \(y=f\left(x\right)=\dfrac{3}{2}x^2\)
Khi x=-3 thì \(y=\dfrac{3}{2}\left(-3\right)^2=\dfrac{3}{2}\cdot9=\dfrac{27}{2}\)
b: y=15
=>\(\dfrac{3}{2}x^2=15\)
=>\(x^2=10\)
=>\(x=\pm\sqrt{10}\)
Tính giá trị của biểu thức sau: a) P = (x2 + 4xy + 4y2 ) – 2(x + 2y)(y – 1) + (y2 – 2y + 1) với x + y = 10 b) Q = (x + y)2 + 4(x – y)2 = 4(x – y)(x + y) với x = 3y
c) M = x3 + y 3 + 3xy với x + y = 1
d) N = x 3 + y 3 với x + y = 2 và x 2 + y2 = 10
\(P=\left(x+2y\right)^2-2\left(x+2y\right)\left(y-1\right)+\left(y-1\right)^2\\ P=\left(x+2y-y+1\right)^2=\left(x+y+1\right)^2\\ Q.sai.đề\\ M=\left(x+y\right)^3-3xy\left(x+y\right)+3xy\\ M=1^3-3xy\left(x+y-1\right)=1-3xy\left(1-1\right)=1-0=1\\ x+y=2\Leftrightarrow\left(x+y\right)^2=4\\ \Leftrightarrow x^2+y^2+2xy=4\\ \Leftrightarrow2xy=4-10=-6\\ \Leftrightarrow xy=-3\\ N=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\\ N=2\left(10+3\right)=2\cdot13=26\)
Cho x+y=5. Tính giá trị của biểu thức:
A=x^3 + y^3 - 2x^2 - 2y^2 + 3xy(x + y) - 4xy + 3(x + y) + 10
\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)
\(A=125-15xy-50+4xy+15xy-4xy+15+10\)
\(A=100\)