Tìm [x], biết:
x - \(\dfrac{8}{5}\) < -6 < x
tìm [x] biết:
x- \(\dfrac{8}{5}\) < -6 < x
Ta có :
\(x-\dfrac{8}{5}< -6\\ \Rightarrow x< -6+\dfrac{8}{5}\\ \Rightarrow x< -\dfrac{22}{5}=-4\dfrac{2}{5}\\ \Rightarrow-6< x< -1\dfrac{2}{5}\\ \Rightarrow x=-5\)
Vậy...
tìm X biết:X+1+2+3+4+5-6-7-8-9=1-2-3-4-5+6+7+8+9
X + 1+2+3+4+5-6-7-8-9=1-2-3-4-5+6+7+8+9
X+ (-15) = 17
X = 17-(-15)
X = 32
vậy x = 32
tk nha
a)tìm x,y biết:x-1/y+2 và x+y=23
b)tìm x biết: 4^5+4^5+4^5+4^5/3^5+3^5+3^5.6^5+6^5+6^5+6^5+6^5+6^5/2^5+2^5=8^2x-6
Theo đề ra, ta có: \(\frac{x-1}{y+2}=\frac{3}{5}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y+2}{5}=\frac{x-1+y+2}{8}=\frac{23-1+2}{8}=\frac{24}{8}=3\)
\(\frac{x-1}{3}=3\Rightarrow x=3.3+1=10\)
\(\frac{y+2}{5}=3\Rightarrow y=5.3-2=13\)
Tìm x, biết:x-(5/6-x)=x-2/3
`x-(5/6 -x) =x-2/3`
`x-5/6 +x -x+2/3 =0`
`x = 5/6-2/3 = 5/6 -4/6 = 1/6`
bạn có thể giải chi tiết hơn dc ko TV Cuber
tìm x biết:x-10/30+x-5/95=14-x/43+148-x/8
\(...\Rightarrow x+x+\dfrac{x}{43}+\dfrac{x}{8}=14+148+\dfrac{10}{30}+\dfrac{5}{95}\)
\(\Rightarrow\left(1+1+\dfrac{1}{43}+\dfrac{1}{8}\right)x=162+\dfrac{1}{3}+\dfrac{1}{19}\)
\(\Rightarrow\left(\dfrac{2.43.8}{43.8}+\dfrac{1.8}{43.8}+\dfrac{1.43}{43.8}\right)x=\dfrac{162.3.19}{3.19}+\dfrac{1.19}{3.19}+\dfrac{1.3}{19.3}\)
\(\Rightarrow\left(\dfrac{688}{344}+\dfrac{8}{344}+\dfrac{43}{344}\right)x=\dfrac{9234}{57}+\dfrac{19}{57}+\dfrac{3}{57}\)
\(\Rightarrow\dfrac{739}{344}x=\dfrac{9256}{57}\)
\(\Rightarrow x=\dfrac{9256}{57}:\dfrac{739}{344}=\dfrac{9256}{57}.\dfrac{344}{739}=\dfrac{\text{3184064}}{\text{42123}}\)
tìm x,y biết:
x/3=y/6 và 2x2-y2=-8
\(\dfrac{x}{3}=\dfrac{y}{6}=\dfrac{2x^2}{18}=\dfrac{y^2}{36}=\dfrac{2x^2-y^2}{18-36}=\dfrac{-8}{-18}=\dfrac{4}{9}\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4.3}{9}=\dfrac{4}{3}\\y=\dfrac{4.6}{9}=\dfrac{8}{3}\end{matrix}\right.\)
tìm x biết:x+1/2+x+1/3+x+1/4+x+1/5=x+1/6
\(\Rightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x+\frac{1}{6}=0\)
\(\Rightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
k cho minh
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\Leftrightarrow x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}-x-\frac{1}{6}=0\)
\(\Leftrightarrow3x+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}-\frac{1}{6}=0\)
Tính ra nhé !
\(x+\frac{1}{2}+x+\frac{1}{3}+x+\frac{1}{4}+x+\frac{1}{5}=x+\frac{1}{6}\)
\(\left(x+x+x+x\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}\right)=x+\frac{1}{6}\)
\(\Rightarrow4x+\frac{77}{60}=x+\frac{1}{6}\)
\(\Rightarrow3x=\frac{1}{6}-\frac{77}{60}\)
\(\Rightarrow3x=-\frac{67}{60}\)
\(\Rightarrow x=-\frac{67}{60}\div3=\frac{-67}{60.3}=-\frac{67}{180}\)
Vậy x = .........
Bài 4. Tìm x biết:
a. \(\dfrac{x}{5}=\dfrac{2}{5},\dfrac{3}{8}=\dfrac{6}{x},\dfrac{1}{9}=\dfrac{x}{27}\)
b. \(\dfrac{4}{x}=\dfrac{8}{6},\dfrac{3}{x-5}=\dfrac{-4}{x+2},\dfrac{x}{-2}=\dfrac{-8}{x}\)
a,2/5 = 2/5 ; 3/8=6/16 ; 1/9=3/27
b, 4/3=8/6 ; -1=-1 ; -4/-2=-8/4
tick cho mik nhé
a) x= 2, x= 8.(6 : 3) = 16, x= 1. (27 : 9)= 3
b) x= 6 : (8 : 4) = 3, x= -1, x= -2 . -8 = x.x => 16 = x2 => 42 = x2 => x=4
Tick cho mình đi
tìm các số thực x, y, z biết:
x + y + z + 8 = \(2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(x+y+z+8=2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\left(1\right)\)
Áp dụng Bđt Bunhiacopxki :
\(\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le\left(2^2+4^2+6^2\right)\left(x-1+y-2+z-3\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z-6\right)\)
\(\Leftrightarrow\left(2\sqrt[]{x-1}+4\sqrt[]{y-2}+6\sqrt[]{z-3}\right)^2\le56^{ }\left(x+y+z+8\right)-784\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=\dfrac{x+y+z-6}{14}\left(2\right)\)
Đặt \(t=x+y+z+8\)
\(\left(1\right)\Leftrightarrow t^2=56t-784\)
\(\Leftrightarrow t^2-56t+784=0\)
\(\Leftrightarrow\left(t-28\right)^2=0\)
\(\Leftrightarrow t=28\)
\(\Leftrightarrow x+y+z+8=28\)
\(\Leftrightarrow x+y+z-6=14\)
\(\left(2\right)\Leftrightarrow\dfrac{x-1}{2}=\dfrac{y-2}{4}=\dfrac{z-3}{8}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.4=4\\z-2=1.8=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=6\\z=10\end{matrix}\right.\) thỏa mãn đề bài