Tìm \(x\)
\(\text{|}x\text{|}+3=5\)
Cho x + 3y - 2z = 36. Tìm x,y,z biết
a) \(\dfrac{\text{x-1}}{\text{3}}=\dfrac{\text{y+2}}{\text{4}}=\dfrac{\text{z-2}}{\text{3}}\)
b) \(\dfrac{\text{x}}{\text{4}}=\dfrac{\text{y}}{\text{3}};\dfrac{\text{y}}{\text{2}}=\dfrac{\text{z}}{\text{5}}\)
c) 9x = 5y ; 2x = z
d) 2x = 3y = 4z
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
Cho x + 3y - 2z = 36 . Tìm x,y,z biết :
a)\(\dfrac{\text{x-1}}{\text{3}}=\dfrac{\text{y+2}}{\text{4}}=\dfrac{\text{z-2}}{\text{3}}\)
b)\(\dfrac{\text{x}}{\text{4}}=\dfrac{\text{y}}{3};\dfrac{\text{y}}{\text{2}}=\dfrac{\text{z}}{\text{5}}\)
c) 9x = 5y ; 2x = z
d) 2x = 3y = 4z
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
Tìm số thập phân x biết:
a) \(^{\text{x}}\)\(^{ }\)+ \(\dfrac{3}{4}\)= \(\dfrac{4}{5}\) | b) \(^{\text{x}}\) - \(\dfrac{1}{2}\) = \(\dfrac{5}{8}\) | c) \(^{\text{x}}\) x \(\dfrac{5}{6}\) = \(\dfrac{4}{5}\) | d)\(^{\text{x}}\) : \(\dfrac{5}{8}\) = \(\dfrac{1}{25}\) |
a) \(x=0,05\)
b) \(x=1,125\)
c) \(x=0,96\)
d) \(x=0,025\)
Bạn tự làm đi dễ mà . Cố mag vận động đầu óc đừng copy làm bài nữa khó lắm mới hỏi thôi
Tìm x;y biết rằng : \(\text{|}x-5\text{|}+\text{|}1-x\text{|}=\frac{12}{\text{|}y+1\text{|}+3}\)
Ai giải giúp mấy bài toán vs
Bài 1:
A=\(\sqrt{\frac{1}{\text{√}2+1}-\frac{\text{√}8-\text{√}10}{2-\text{√}5}}\)
B=\(\frac{5\text{√}5}{\text{√}5+2}+\frac{\text{√}5}{\text{√}5-1}-\frac{3\text{√}5}{3+\text{√}5}\)
Bài 2 rút gọn biểu thức
A=\(\left(\frac{x+\sqrt[]{xy}}{\text{√}x+\text{√}y}-2\right):\frac{1}{\text{√}x+2}\) với x :y >0
B=\(\left(\frac{a}{a-2\text{√}a}+\frac{a}{\text{√}a-2}\right):\frac{\text{√}a+1}{a-4\text{√}a+4}\)
Bài 3 cho biểu thức
P=\(\left(\frac{x-2}{x+2\text{√}x}+\frac{1}{\text{√}x+2}\right)\frac{\text{√}x+1}{\text{√}x-1}\)
a)Rút gọn P
b)tìm x để P=\(\text{√}x+\frac{5}{2}\)
bài 4 rút gọn biểu thức
A=\(\frac{1}{x+\text{√}x}+\frac{2\text{√}x}{x-1}-\frac{1}{x-\text{√}x}\)
B=\(\left(\frac{x}{x+3\text{√}x}+\frac{1}{\text{√}x+3}\right):\left(1-\frac{2}{\text{√}x}+\frac{6}{x+3\text{√}x}\right)\)
Bài 5
A=\(\left(\frac{2}{\text{√}x-3}-\frac{1}{\text{√}x+3}-\frac{x}{\text{√}x\left(x-9\right)}\right):\text{(√}x+3-\frac{x}{\text{√}x-3}\)
a)rút gọn A
b)tìm gtri x để A= -1/4
AI GIẢI GIÙM MÌNH ĐI MÌNH TẠ ƠN
Cho \(\dfrac{\text{x}}{\text{2}}=\dfrac{\text{y}}{\text{3}}=\dfrac{\text{z}}{\text{5}}\). Tìm x,y,z biết
a) x + y + z = 40
b) x - 3y + 2z = 9
c) x -y + z = 28
d) 3x + 2y = 24
a. Theo t/c của dãy tỉ số bằng nhau ta có:
x+y+z/2+3+5=40/10=4
=>x=4.2=8
=>y=4.3=12
=>z=4.5=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-3y+2z}{2-3\cdot3+2\cdot5}=\dfrac{9}{-15}=\dfrac{-3}{5}\)
Do đó: \(\left\{{}\begin{matrix}x=-\dfrac{6}{5}\\y=\dfrac{-9}{5}\\z=-3\end{matrix}\right.\)
tìm x, biết:
a) \(\left(3\text{x}+2\right)\left(x-1\right)-3\left(x+1\right)\left(x-2\right)=4\)
b) \(\left(3\text{x}-5\right)\left(7-5\text{x}\right)-\left(5\text{x}+2\right)\left(2-3\text{x}\right)=4\)
Tìm giá trị nhỏ nhất của biểu thức:
\(D=\text{|}x+3\text{|}+5\text{|}6x+1\text{|}+\text{|}x-1\text{|}+3\)
Cần cm : \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\Leftrightarrow\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (luôn đúng; dấu "=" xảy ra \(\Leftrightarrow ab\ge0\))
Áp dụng ta có :
\(A=\left|x+3\right|+5\left|6x+1\right|+\left|x-1\right|+3=\left(\left|x+3\right|+\left|1-x\right|\right)+5\left|6x+1\right|+3\)
\(\ge\left|x+3+1-x\right|+5\left|6x+1\right|+3=5\left|6x+1\right|+7\ge7\) có GTNN là 7
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(1-x\right)\ge0\\\left|6x+1\right|=0\end{cases}\Rightarrow x=-\frac{1}{6}\left(TM\right)}\)
vẬY \(D_{min}=7\) khi \(x=-\frac{1}{6}\)
Tìm các cặp số nguyên (x;y) thõa mãn
\(\text{|}x-5\text{|}+\text{|}1-x\text{|}=\frac{12}{\text{|}y+1\text{|}+3}\)
Xét \(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)(1)
Ta có \(\left|y+1\right|\ge0\Leftrightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) nên \(VP\le4\)(2)
Từ (1) ; (2) \(\Rightarrow VP\le4\le VT\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\\\left|y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le5\\y=-1\end{cases}}}\)