Chứng minh rằng các biểu thức sau luôn có giá trị dương với mọi giá trị của biến
x^2-8x+20
4x^2-12x+11
x^2-x+1
x^2-2x+y^2+4y+6
x^2-8x+20=(x^2-8x+16)+4
=(x-4)^2+4>0(vì (x-4)^2>=0)
4x^2-12x+11=4x^2-12x+9+2
=(2x-3)^2+2>0
x^2-x+1=x^2-x+1/4+3/4
=(x-1/2)^2+3/4>0
x^2-2x+y^2+4y+6
=x^2-2x+1+y^2+4y+4+1
=(x-1)^2+(y+2)^2+1>0
a: \(x^2-8x+20\)
\(=x^2-8x+16+4\)
\(=\left(x-4\right)^2+4>0\forall x\)
b: Ta có: \(4x^2-12x+11\)
\(=4x^2-12x+9+2\)
\(=\left(2x-3\right)^2+2>0\forall x\)
c: Ta có: \(x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d: Ta có: \(x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
Chứng minh rằng biểu thức C=4x2+4y2-8x+4y+427 luôn dương với mọi x, y
Ta có : C = 4x2 + 4y2 - 8x + 4y + 427
=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422
=> C = (2x - 2)2 + (2y + 1)2 + 422
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall x\)
Nên C = (2x - 2)2 + (2y + 1)2 + 422 \(\ge422\forall x\)
Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)
Vậy C luôn luôn dương (đpcm)
chứng minh biểu thức luôn âm với mọi x,y:
F= -9+6x-y^2+4y-21
Bài 8: Chứng minh biểu thức sau luôn nhận giá trị dương với mọi giá trị của x:
a)\(x^2-8x+19\)
b)\(3x^2-6x+5\)
c)\(x^2+y^2-8x+4y+27\)
d)\(x^2-x+1\)
a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)
Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)
Vậy x2-8x+19 luôn nhận giá trị dương
mấy câu kia làm tương tự
Chứng minh biểu thức sau luôn dương với mọi x
P=16x\(^2\) + 8x + 2
\(P=16x^2+8x+2=\left(16x^2+8x+1\right)+1=\left(4x+1\right)^2+1\)
Do \(\left\{{}\begin{matrix}\left(4x+1\right)^2\ge0\\1>0\end{matrix}\right.\) ;\(\forall x\)
\(\Rightarrow P=\left(4x+1\right)^2+1>0;\forall x\) (đpcm)
\(P=16x^2+8x+2\)
\(=\left(16x^2+8x+1\right)+1\)
\(=\left[\left(4x\right)^2+2\cdot4x\cdot1+1^2\right]+1\)
\(=\left(4x+1\right)^2+1\)
Ta thấy: \(\left(4x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow P=\left(4x+1\right)^2+1\ge1>0\forall x\)
hay \(P\) luôn dương với mọi \(x\).
Bài 6 chứng minh các biểu thức luôn dương vs mọi x,y
A=x^2+2x+2
B=4x^2-4x+11
C=x^2-x+1
D=x^2-2x+y^2+4y+6
E=x^2-2xy+y^2+x^2-8x+20
a) \(A=x^2+2x+2\)
\(=x^2+2x+1+1\)
\(=\left(x+1\right)^2+1>0\forall x\)
b) \(B=4x^2-4x+11\)
\(=4x^2-4x+1+10\)
\(=\left(2x-1\right)^2+10>0\forall x\)
c) \(C=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)
d) Ta có: \(D=x^2-2x+y^2+4y+6\)
\(=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1>0\forall x,y\)
e) Ta có: \(D=x^2-2xy+y^2+x^2-8x+20\)
\(=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4>0\forall x,y\)
\(A=x^2+2x+2=\left(x+1\right)^2+1\ge1>0\left(\forall x\right)\)
\(B=4x^2-4x+11=\left(2x-1\right)^2+10\ge10>0\left(\forall x\right)\)
\(C=x^2-x+1=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
\(D=x^2-2x+y^2+4y+6=x^2-2x+1+y^2+4y+4+1\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1>0\)
\(E=x^2-2xy+y^2+x^2-8x+16+4\)
\(=\left(x-y\right)^2+\left(x-4\right)^2+4\ge4>0\)\(\left(\forall x,y\right)\)
Các bn giúp mik mấy câu này với, cần gấp
Chứng minh rằng các biểu thức sau luôn dương với mọi trường hợp
a, x^2-8x+19
b, 3x^2-6x+5
c, x^2-x+1
d, x^2-4x+7
e, x^2+x+2
f, x^2+8
a) \(x^2-8x+19=\left(x-4\right)^2+3>0\)
b) \(3x^2-6x+5=3\left(x-1\right)^2+2>0\)
c) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
d) \(x^2-4x+7=\left(x-2\right)^2+3>0\)
e) \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
f) do \(x^2\ge0\) với mọi x
nên \(x^2+8>0\)
CMR biểu thức sau luôn dương
A=2x^2+3x+7
B=(x-1)^2+(x+2)^2
C=x^2+x+1
D=x^2-8x+19
E=3x^2-6x+5
F=x^2+y^2-8x+4y+27
Giups mình với, làm chi tiết ạ, mình dốt khoản này lắm!!
Chứng minh các biểu thức sau luôn dương với mọi giá trị của biến :
a, F=4x^2 - 12 + 11
\(Sửa:F=4x^2-12x+11=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2>0\left(đpcm\right)\)