tìm GTNN xyz /[x+y]nhân[y+z]nhân[x+z] biết x,y,z>=0
Tìm GTNN của A=(x+y)(x+z). Biết x,y,z >0 và xyz(x+y+z)=1
Cho x,y,z>0 và x+y+z=2. Tìm gtnn của A = \(\dfrac{y+z}{xyz}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A=\frac{1}{xz}+\frac{1}{xy}=\frac{1}{x}(\frac{1}{y}+\frac{1}{z})\geq \frac{1}{x}.\frac{4}{y+z}$
$=\frac{4}{x(y+z)}=\frac{4}{x(2-x)}$
Áp dụng BĐT AM-GM:
$x(2-x)\leq \left(\frac{x+2-x}{2}\right)^2=1$
$\Rightarrow A\geq \frac{4}{1}=4$
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=1; y=z=\frac{1}{2}$
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
cho x, y, z>0 và xyz=1
Tìm gtnn của P=(x+y)(y+z)(z+x)-2(x+y+z)
CHo x,y,z>0 và x+y+z=1 tìm GTNN B=(x+y)/xyz
B=(x+y)/xyz=1/yz + 1/xz
có (x-y)2 = x2-2xy+y2 >/ 0 => x2-2xy+y2+4xy >/ 4xy =>(x+y)2 >/ 4xy => 1/x + 1/y >/ 4/x+y , đẳng thức xảy ra <=> x=y
=> B=1/yz + 1/xz >/ 4/yz+xz = 4/z(x+y) = 4/z(1-z)
áp dụng bđt am-gm z(1-z) </ (z+1-z)2/4 </ 1/4
=> B >/ 4/1/4 >/ 16 ,minB=16 ,đẳng thức xảy ra <=> x=y=1/4;z=1/2
cho các số dương x, y, z thỏa mãn xyz-16/x+y+z=0
Tìm GTNN của biểu thức P=(x+y)(x+z)
1. Cho \(x,y,z>0\), \(x+y\le1\) và \(xyz=1\). Tìm GTLN của biểu thức \(P=\dfrac{1}{1+4x^2}+\dfrac{1}{1+4y^2}-\sqrt{z+1}\)
2. Cho \(x,y,z>0\), \(xyz=x+y+z\). Tìm GTNN của biểu thức \(P=xy+yz+zx-\sqrt{1+x^2}-\sqrt{1+y^2}-\sqrt{1+z^2}\) (dùng phương pháp lượng giác hóa)
Tìm gtnn của A=(x+y)(y+z) biết x,y,z\(\in\)R và xyz(x+y+z)=1
\(\left(x+y\right)\left(y+z\right)=xy+xz+y^2+yz=y\left(x+y+z\right)+xz\)
\(=y.\frac{1}{xyz}+xz=\frac{1}{xz}+xz\ge2\)