Cho x,y,z > 0 thỏa Đk : (x+y+z)xyz =1 Tìm GTNN của BT sau :
P = (x+y)(x+z)
cho x, y, z> 0 thỏa mãn x+y+z=xyz. Tìm gtnn của p=x+2y+5z
cho x, y, z>0 và xyz=1
Tìm gtnn của P=(x+y)(y+z)(z+x)-2(x+y+z)
Tìm GTNN của A=(x+y)(x+z). Biết x,y,z >0 và xyz(x+y+z)=1
Cho x,y,z > 1 thỏa mãn điều kiện x + y + z = xyz. Tìm GTNN của biểu thức \(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
Cho ba số dương x, y, z thỏa mãn: (x+y+z)3+x2+y2+z2+4=29xyz. Tìm gtnn của xyz
cho 3 số thực x, y, z thỏa mãn \(x+y+z=xyz\) và \(x>1;y>1;z>1\)
tìm GTNN của \(P=\frac{x-1}{y^2}+\frac{y-1}{z^2}+\frac{z-1}{x^2}\)
Cho x,y,z>0 và xyz=1. Tìm GTNN của M = \(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)