Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mèo Dương
Xem chi tiết
Nhật Văn
8 tháng 2 2023 lúc 20:50

kh hiểu bn ơi

Lãnh
8 tháng 2 2023 lúc 20:55

`4x=2+xx+1x<=>4x=2+3x<=>4x-3x=2<=>1x=2<=>x=2`

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 6 2019 lúc 6:43

Đáp số của bài toán đúng nhưng lời giải của bạn Hà chưa đầy đủ.

Lời giải của bạn Hà thiếu bước tìm điều kiện xác định và bước đối chiếu giá trị của x tìm được với điều kiện để kết luận nghiệm.

Trong bài toán trên thì điều kiện xác định của phương trình là:

x ≠ - 3/2 và x  ≠  - 1/2

So sánh với điều kiện xác định thì giá trị x = - 4/7 thỏa mãn.

Vậy x = - 4/7 là nghiệm của phương trình.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:36

a) \(\sqrt {6{x^2} + 13x + 13}  = 2x + 4\)    

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}6{x^2} + 13x + 13 = 4{x^2} + 16x + 16\\ \Leftrightarrow 2{x^2} - 3x - 3 = 0\end{array}\)

\( \Leftrightarrow x = \frac{{3 - \sqrt {33} }}{4}\) hoặc \(x = \frac{{3 + \sqrt {33} }}{4}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy cả 2 giá trị \(x = \frac{{3 - \sqrt {33} }}{4}\) và \(x = \frac{{3 + \sqrt {33} }}{4}\) đều thỏa mãn

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{{3 - \sqrt {33} }}{4};\frac{{3 + \sqrt {33} }}{4}} \right\}\)

b) \(\sqrt {2{x^2} + 5x + 3}  =  - 3 - x\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}2{x^2} + 5x + 3 = 9 + 6x + {x^2}\\ \Leftrightarrow {x^2} - x - 6 = 0\end{array}\)

\( \Leftrightarrow x =  - 2\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy không có giá trị nào thỏa mãn

Vậy phương trình vô nghiệm

c) \(\sqrt {3{x^2} - 17x + 23}  = x - 3\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l}3{x^2} - 17x + 23 = {x^2} - 6x + 9\\ \Leftrightarrow 2{x^2} - 11x + 14 = 0\end{array}\)

\( \Leftrightarrow x = 2\) hoặc \(x = \frac{7}{2}\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy \(x = \frac{7}{2}\) thỏa mãn

Vậy nghiệm của phương trình là \(x = \frac{7}{2}\)                  

d) \(\sqrt { - {x^2} + 2x + 4}  = x - 2\)

Bình phương hai vế của phương trình ta được:

\(\begin{array}{l} - {x^2} + 2x + 4 = {x^2} - 4x + 4\\ \Leftrightarrow 2{x^2} - 6x = 0\end{array}\)

\( \Leftrightarrow x = 0\) hoặc \(x = 3\)

Thay lần lượt các giá trị này vào phương trình đã cho, ta thấy x=3 thỏa mãn

Vậy nghiệm của phương trình là x=3

Phạm Hương Giang
Xem chi tiết
Bakalam
29 tháng 1 2019 lúc 0:14

a, Xét x=0 không phải nghiệm pt chia 2 vế cho x, đặt t= x+1/x từ đó suy ra phương trình ẩn t, giải ra ta được các phương trình ẩn x rồi ra x. 

b, Tách đa thức thành tích của đơn thức (x+1) và 1 đa thức bậc 4 rồi làm như câu a,. 

Nguyệt
29 tháng 1 2019 lúc 12:47

\(2x^4+3x^3-x^2+3x+2=0\)

\(\Leftrightarrow2x^4+4x^3-x^3-2x^2+x^2+2x+x+2=0\)

\(\Leftrightarrow2x^3.\left(x+2\right)-x^2.\left(x+2\right)+x.\left(x+2\right)+\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3-x^2+x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x^3+x^2-2x^2-x+2x+1\right)=0\)

\(\Leftrightarrow\left(x+2\right).\left(2x+1\right).\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\2x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-\frac{1}{2}\end{cases}}}\)

\(\text{Vì }x^2-x+1=x^2-x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy phương trình có nghiệm \(S=\left\{-2,-\frac{1}{2}\right\}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 12 2018 lúc 13:38

yến đoàn
Xem chi tiết
Lấp La Lấp Lánh
7 tháng 9 2021 lúc 10:40

a) \(x^4-13x^2+36=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=2\\x=-2\\x=-3\end{matrix}\right.\)

b) \(5x^4+3x^2-8=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(5x^2+8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)( do \(5x^2+8\ge8>0\))

 

Nguyễn Lê Phước Thịnh
7 tháng 9 2021 lúc 13:46

c: Ta có: \(2x^4+3x^2+2=0\)

Đặt \(a=x^2\)

Phương trình tương đương là: \(2a^2+3a+2=0\)

\(\text{Δ}=3^2-4\cdot2\cdot2=9-16=-7\)

Vì Δ<0 nên phương trình vô nghiệm

Vậy: Phương trình \(2x^4+3x^2+2=0\) vô nghiệm

Đặng Tiến Thắng
Xem chi tiết
Vũ Hùng Việt
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 4 2021 lúc 20:07

a)9x2 - 3 = ( 3x + 1 )( 2x - 3 )

<=> 9x2 - 3 = 6x2 - 7x  - 3

<=> 3x2 + 7x = 0

<=> x( 3x + 7 ) = 0 

<=> x = 0 hoặc x = -7/3

b) 6x2 - 13x + 6 = 0

<=> 6x2 - 9x - 4x + 6 = 0

<=> 3x( 2x - 3 ) - 2( 2x - 3 ) = 0

<=> ( 2x - 3 )( 3x - 2 ) = 0

<=> x = 3/2 hoặc x = 2/3

c) \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)( ĐKXĐ : x ≠ ±1 )

<=> \(\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

=> 3x + 3 = -3x - 2 - 4x + 4

<=> 10x = -1 <=> x = -1/10 (tm)

Khách vãng lai đã xóa
Nguyễn Huy Tú
16 tháng 4 2021 lúc 20:00

a, \(9x^2-3=\left(3x+1\right)\left(2x-3\right)\Leftrightarrow9x^2-3=6x^2-9x+2x-3\)

\(\Leftrightarrow9x^2-3=6x^2-7x-3\Leftrightarrow3x^2+7x=0\Leftrightarrow x\left(3x+7\right)=0\Leftrightarrow x=0;x=-\frac{7}{3}\)

Vậy tập nghiệm của phương trình là S = { -7/3 ; 0 } 

b, \(6x^2-13x+6=0\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=0\Leftrightarrow x=\frac{2}{3};x=\frac{3}{2}\)

Vậy tập nghiệm của phương trình là S = { 2/3 ; 3/2 } 

c, \(\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}ĐK:x\ne\pm1\)

\(\Leftrightarrow\frac{3\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{-3x-2}{\left(x-1\right)\left(x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow3x+3=-3x-2-4x+4\Leftrightarrow3x+3=-7x+2\)

\(\Leftrightarrow10x=-1\Leftrightarrow x=-\frac{1}{10}\)Vậy tập nghiệm của phương trình là S = { -1/10 } 

Khách vãng lai đã xóa
KYAN Gaming
Xem chi tiết
𝓓𝓾𝔂 𝓐𝓷𝓱
21 tháng 1 2021 lúc 20:47

a) \(x^2-3x^3+4x^2-3x+1=0\)

\(\Leftrightarrow-3x^3+5x^2-3x+1=0\)

\(\Leftrightarrow-3x^3+2x^2-x+3x^2-2x+1=0\)

\(\Leftrightarrow x\left(-3x^2+2x-1\right)-1\left(-3x^2+2x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-3x^2+2x-1\right)=0\)

\(\Rightarrow x-1=0\) \(\Leftrightarrow x=1\)

Vậy \(x=1\)

b) \(3x^4-13x^3+16x^2-13x+3=0\)

\(\Leftrightarrow3x^4-4x^3+4x^2-x-9x^3+12x^2+12x+3=0\)

\(\Leftrightarrow x\left(3x^3-4x^2+4x-1\right)-3\left(3x^3-4x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)

\(\Leftrightarrow3\left(x-3\right)\left(x-\dfrac{1}{3}\right)\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{3;\dfrac{1}{3}\right\}\)

Nguyễn Lê Phước Thịnh
21 tháng 1 2021 lúc 21:07

a) Ta có: \(x^2-3x^3+4x^2-3x+1=0\)

\(\Leftrightarrow-3x^3+5x^2-3x+1=0\)

\(\Leftrightarrow-3x^3+3x^2+2x^2-2x-x+1=0\)

\(\Leftrightarrow-3x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-3x^2+2x-1\right)=0\)

mà \(-3x^2+2x-1\ne0\forall x\)

nên x-1=0

hay x=1

Vậy: S={1}

b) Ta có: \(3x^4-13x^3+16x^2-13x+3=0\)

\(\Leftrightarrow3x^4-9x^3-4x^3+12x^2+4x^2-12x-x+3=0\)

\(\Leftrightarrow3x^3\left(x-3\right)-4x^2\left(x-3\right)+4x\left(x-3\right)-\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x^3-4x^2+4x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x^3-x^2-3x^2+x+3x-1\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left[x^2\left(3x-1\right)-x\left(3x-1\right)+\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-3\right)\left(3x-1\right)\left(x^2-x+1\right)=0\)

mà \(x^2-x+1\ne0\forall x\)

nên \(\left(x-3\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{1}{3};3\right\}\)