Tìm trục đối xứng của mỗi hình sau.
a) Hình vuông,
b) Hình chữ nhật;
c) Hình tam giác đều;
d) Hình bình hành;
e) Hình thoi;
g) Hình thang cân.
Các tứ giác sau có bao nhiêu trục đối xứng, bao nhiêu tâm đối xứng?
Tứ giác: ___ trục đối xứng, ___ tâm đối xứng
Hình thang: ___ trục đối xứng, ___ tâm đối xứng
Hình thang cân: ___ trục đối xứng, ___ tâm đối xứng
Hình binh hành: ___ trục đối xứng, ___ tâm đối xứng
Hình chữ nhật: ___ trục đối xứng, ___ tâm đối xứng
Hình thoi: ___ trục đối xứng, ___ tâm đối xứng
Hình vuông: ___ trục đối xứng, ___ tâm đối xứng
Tứ giác: 0 trục, 0 tâm
Hình thang 0 trục, 0 tâm
Hình thang cân 1 trục 0 tâm
Hình bình hành 0 trục 1 tâm
Hình chữ nhật 2 trục 1 tâm
Hình thoi 2 trục 1 tâm
Hình vuông 4 trục 1 tâm
Tứ giác: 0 trục đối xứng, 0 tâm đối xứng
Hình thang: 0 trục đối xứng, 0 tâm đối xứng
Hình thang cân: 1 trục đối xứng, 0 tâm đối xứng
Hình bình hành: 0 trục đối xứng, 1 tâm đối xứng
Hình chữ nhật: 2 trục đối xứng, 1 tâm đối xứng
Hình thoi: 2 trục đối xứng, 1 tâm đối xứng
Hình vuông: 4 trục đối xứng, 1 tâm đối xứng
Tích đúng 5 sao cho mình nhé.
OK bạn
Hình nào sau đây có trục đối xứng
A. Hình thang
B. Hình thanh vuông
C. Hình bình hành
D. Hình chữ nhật
Trong các hình sau hình nào có trục đối xứng ?
A. Hình Thang
B. Hình Chữ Nhật
C. Hình Thang Vuông
D. Hình Bình Hành
Chứng minh rằng:
a) Giao điểm của hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
a)
Giả sử ABCD là hình chữ nhật. Gọi O là giao điểm của AC và BD.
Theo tính chất đường chéo của hình chữ nhật ta có; hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường.
Vậy: OA = OC và OB= OD
Do đó, O là tâm đối xứng của hình chữ nhật đó.
b)
Áp dung tính chất: Đường thẳng đi qua trung điểm hai đáy của hình thang cân là trục đối xứng của hình thang cân đó.
ABCD là hình chữ nhật
⇒ ABCD là hình thang cân (hai đáy AB và CD)
⇒ Đường thẳng đi qua trung điểm AB và CD là trục đối xứng ABCD.
Tương tự vậy: ABCD cũng là hình thang cân với hai đáy AD và BC
⇒ Đường thẳng đi qua trung điểm AD và BC là trục đối xứng của ABCD.
Vậy ta có điều phải chứng minh.
Chứng minh rằng:
a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
Chứng minh rằng :
a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó
a) Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình.
b) Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cần có đáy là hai cạnh đối xứng của hình chữ nhật là trục đối xứng của hình
a) Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình.
b) Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cần có đáy là hai cạnh đối xứng của hình chữ nhật là trục đối xứng của hình.
1) Trong các hình: Hình vuông, hình bình hành, hình tròn, hình thang cân, hình thoi.
a) Hình nào chỉ có tâm đối xứng
b) Hình nào chỉ có trục đối xứng c) Hình nào vừa có tâm đối xứng, vừa có trục đối xứng
2) Một nền nhà hình chữ nhật có chiều rộng 4m, chiều dài gấp ba chiều rộng. a) Tính diện tích
b) Nếu lát nền nhà bằng những viên gạch hình vuông có cạnh 40cm thì cần bao nhiêu tiền gạch biết mỗi viên gạch có giá 18 000 đồng
Câu 2:
\(a,\) Chiều dài là \(4.3=12(m)\)
Diện tích là \(4.12=48(m^2)\)
\(b,48(m^2)=480000(cm^2)\)
Số viên gạch cần để lát là \(480000:(40.40)=300(\text{viên gạch})\)
Vậy cần \(300.18000=5400000(đồng)\)
Vẽ rồi cắt một hình chữ nhật bằng giấy. Hãy tìm trục đối xứng của nó bằng cách gấp giấy. Trục đối xứng của nó là đường thẳng nào? Em tìm được mấy trục đối xứng?
+) Trục đối xứng của hình chữ nhật là đường thẳng đi qua trung điểm hai cạnh đối diện vì khi gấp theo đường đó thì ta được hai hình chữ nhật chồng khít lên nhau.
+) Ta tìm được hai trục đối xứng.
Chứng minh rằng:
a) Giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình chữ nhật đó.
b) Hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó.
a,Vì hình bình hành nhận giao điểm hai đường chéo làm tâm đối xứng, mà hình chữ nhật là một hình bình hành nên giao điểm hai đường chéo của hình chữ nhật là tâm đối xứng của hình
b,Vì hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có hai đáy là hai cạnh đối xứng của hình chữ nhật nên hai đường thẳng đi qua trung điểm hai cặp cạnh đối của hình chữ nhật là hai trục đối xứng của hình chữ nhật đó
a) Do trong hình chữ nhật, hai đường chéo cắt nhau tại trung điểm mỗi đường nên giao điểm của hai đường chéo là tâm đối xứng của hình chữ nhật.
b) Do hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có đáy là hai cạnh đối xứng của hình chữ nhật, do đó hai đường thẳng đi qua trung điểm hai cạnh đối của hình chữ nhật là trục đối xứng của hình.
a) Do trong hình chữ nhật, hai đường chéo cắt nhau tại trung điểm mỗi đường nên giao điểm của hai đường chéo là tâm đối xứng của hình chữ nhật.
b) Do hình thang cân nhận đường thẳng đi qua trung điểm hai đáy làm trục đối xứng, mà hình chữ nhật là một hình thang cân có đáy là hai cạnh đối xứng của hình chữ nhật, do đó hai đường thẳng đi qua trung điểm hai cạnh đối của hình chữ nhật là trục đối xứng của hình.