(Giúp mk ý b với ạ!!!)
Cho hình chóp S.ABCD có G1, G2 lần lượt là trọng tâm các tam giác SAB và SAD.
a) Chứng minh rằng \(G_1G_2//BD\).
b) Dựng thiết diện của hình chóp cắt bởi \(\left(CG_1G_2\right)\)
chóp S.ABCD có đáy là hbh. Lấy M, N, P lần lượt là trung điểm SB,AB, SC. Tìm thiết diện của chóp tạo bởi (anpha) qua NP và song song với AM 2, cho S.ABCD có AD//BC. Gọi G1, G2 là trọng tâm tam giác SAB và tam giác SAD. Tìm thiết diện của hình chóp tạo bởi (CG1G2)
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G 1 , G 2 lần lượt là trọng tâm của các tam giác SAB và SAD. Mệnh đề nào dưới đây là đúng?
A. G 1 G 2 / / S B D
B. G 1 G 2 / / S B C
C. G 1 G 2 / / S A C
D. G 1 G 2 / / S C D
Cho hình chóp S.ABCD gọi MN lần lượt là trung điểm của AB và BC. G1, G2 là trọng tâm của tam giác SAB, SBC. Chứng minh AC // (SMN)
G1,G2 // (SAC)
+) Xét △ABC có MN là đường trung bình ⇒MN//AC
Mà MN∈ (SMN) ⇒AC// (SMN)
+) Xét △SMN có \(\dfrac{SG1}{SM}\)=\(\dfrac{SG2}{SN}\)=\(\dfrac{2}{3}\)( Tính chất trọng tâm)
⇒G1G2//MN ⇒ G1G2//AC ( Vì AC//MN)
Mà AC∈(SAC) ⇒ G1G2// (SAC)
Cho hình chóp S. ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm tam giác SAB. Tìm thiết diện của hình chóp S.ABCD cắt bởi (IJG)
A. Thiết diện là tam giác GIJ.
B. Thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
C. Thiết diện là hình bình hành MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
D. Thiết diện là tam giác KIJ, với K là giao điểm của GI với SB.
Do IJ là đường thẳng trung bình của hình thang ABCD nên IJ // AB. Hai mặt phẳng (GIJ) và (SAB) lần lượt chứa hai đường thẳng song song nên giao tuyến của chúng là đường thẳng đi qua G và song song với AB. Đường thẳng này cắt SA tại điểm M và cắt SB tại N. vậy thiết diện là hình thang MIJN, với M, N là giao điểm của đường thẳng đi qua G và song song với AB với hai đường thẳng SA, SB.
Đáp án B.
Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Gọi G 1 và G 2 lần lượt là trọng tâm của các tam giác SBC và SCD
Tìm giao tuyến của mặt phẳng ( A G 1 G 2 ) với các mặt phẳng (ABCD) và (SCD).
Xác định thiết diện của hình chóp với mặt phẳng ( A G 1 G 2 ) .
Gọi I, J lần lượt là trung điểm của BC, CD.
Ta có I J / / G 1 G 2 nên giao tuyến của hai mặt phẳng ( A G 1 G 2 ) và (ABCD) là đường thẳng d qua A và song song với IJ
Gọi O = IJ ∩ AC, K = G 1 G 2 ∩ S O , L = AK ∩ SC
L G 2 cắt SD tại R
L G 2 cắt SB tại Q
Ta có thiết diện là tứ giác AQLR.
Cho hình chóp S.ABCD có đáy hình vuông cạnh a, SA=7a và SA vuông góc với mặt phẳng đáy. Gọi G, I, J thứ tự là trọng tâm của các tam giác SAB, SAD và trung điểm của CD. Diện tích thiết diện của hình chóp khi cắt bởi mặt phẳng (GIJ) bằng
A. 3 33 a 2 8
B. 23 a 2 60
C. 31 33 a 2 45
D. 93 a 2 40
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi G,H lần lượt là trọng tâm của tam giác SAD và ABC . Chứng minh rằng GH// (SAB)
Trong mp(SDA), gọi E là giao điểm của SG với AD
Trong mp(SBC), gọi K là giao điểm của SH với BC
Xét ΔSAD có
G là trọng tâm của ΔSAD
E là giao điểm của SG với AD
Do đó: E là trung điểm của AD
Xét ΔSBC có
H là trọng tâm của ΔSBC
SH cắt BC tại K
Do đó: K là trung điểm của BC
Xét hình thang ABCD(AB//CD) có
E,K lần lượt là trung điểm của AD,BC
=>EK là đường trung bình
=>EK//AB
Xét ΔSDE có
SE là đường trung tuyến
G là trọng tâm
Do đó: \(\dfrac{SG}{SE}=\dfrac{2}{3}\)
Xét ΔSBC có
H là trọng tâm của ΔSBC
SK là đường trung tuyến
Do đó: \(\dfrac{SH}{SK}=\dfrac{2}{3}\)
Xét ΔSEK có \(\dfrac{SG}{SE}=\dfrac{SH}{SK}\left(=\dfrac{2}{3}\right)\)
nên GH//EK
mà EK//AB
nên GH//AB
Ta có: GH//AB
AB\(\subset\)(SAB)
GH không nằm trong mp(SAB)
Do đó: GH//(SAB)
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp S.ABCD cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB,CD để thiết diện đó là hình bình hành?
A. AB = 3CD
B. AB = 2CD
C. CD = 2AB
D. CD = 3AB
Đáp án A
Qua G kẻ đường thẳng d song song với AB và cắt SA, SB lần lượt tại hai điểm Q, P. Vì MN là đường trung bình của ABCD ⇒ MN//AB
Do đó MN//PQ. Vậy giao tuyến của mặt phẳng (MNG) và (SAB) là PQ.
Mặt phẳng (MNG) cắt khối chóp S.ABCD theo thiết diện là tứ giác MNPQ
Vì MN//PQ suy ra MNPQ là hình thang
Để MNPQ là hình bình hành ⇔ MN=PQ (1)
Gọi I là trung điểm của AB, G là trọng tâm tam giác S A B ⇒ S G S I = 2 3
Tam giác SAB có P Q / / A B ⇒ P Q A B = S G S I = 2 3 ⇔ P Q = 2 3 A B (2)
Mà MN là đường trung bình hình thang A B C D ⇒ M N = A B + C D 2 (3)
Từ (1) , (2) và (3) suy ra 2 3 A B = A B + C D 2 ⇔ 4 A B = 3 A B + 3 C D ⇔ A B = 3 C D .
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi M, N lần lượt là trung điểm của các cạnh AD, BC. G là trọng tâm của tam giác SAB. Thiết diện của hình chóp cắt bởi (IJG) là một tứ giác. Tìm điều kiện của AB, CD để thiết diện đó là hình bình hành?
A. AB=3CD
B. AB=2CD
C. CD=2AB
D. CD=3AB