Chứng minh:
2+2^2+2^3+2^4+........+2^2022 chia hết cho 7.
Giúp mình bài này với ạ.
Chứng minh 1-2+2^2-2^3+2^4-2^5+2^6-...-2^2021+2^2022 chia cho 6 dư 1. Giúp mình với ạ
Lời giải:
Đặt $A=1-2+2^2-2^3+2^4-2^5+2^6-....-2^{2021}+2^{2022}$
$A=1+(-2+2^2-2^3)+(2^4-2^5+2^6)+(-2^7+2^8-2^9)+...+(2^{2020}-2^{2021}+2^{2022})$
$A=1+(-2+2^2-2^3)+2^3(2-2^2+2^3)+2^6(-2+2^2-2^3)+....+2^{2019}(2-2^2+2^3)$
$=1+(-6)+2^3.6+2^6(-6)+....+2^{2019}.6$
$=1+6(-1+2^3-2^6+...+2^{2019})$
Suy ra $A$ chia $6$ dư $1$/
A= 75.( 4^2023 + 4^2022 +...+ 4^2 + 5) + 25. Chứng minh rằng A chia hết cho 4^2024. Giúp mình với ạ, cảm ơn nhiều.
Chứng minh rằng A = 4 + 4^2 + 4^3 + 4^4 + ... + 4^2021 + 4^2022 chia hết cho 5
Giải giúp mình với mình đang gấp!!!!
Em xem lại đề nhé! Có xuất hiện dấu + không? Hay chỉ là dấu x
A= 4+4\(^2\)+4\(^3\)+4\(^4\)+...+4\(^{2021}\)+4\(^{2022}\)⋮5
A=(4+4\(^2\))+(4\(^3\)+4\(^4\))+...+(4\(^{2021}\)+4\(^{2022}\))⋮5
A=4(1+4)+4\(^2\)(1+4)+...+4\(^{2021}\)(1+4)⋮5
A=4.5+4\(^2\).5+...+4\(^{2021}\).5⋮5
A=(4+4\(^2\)+...+4\(^{2021}\)).5⋮5
Vậy A⋮5
\(A=4+4^2+4^3+4^4+...+4^{2021}+4^{2022}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{2021}+4^{2022}\right)\)
\(=4.\left(1+4\right)+4^3.\left(1+4\right)+...+4^{2021}.\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{2021}.5\)
\(=5.\left(4+4^3+...+4^{2021}\right)⋮5\)
Vậy \(A⋮5\)
1) Cho A = 6 ^ 2020 + 6 ^ 2021 + 6 ^ 2022 + 6 ^ 2023 . Chứng tỏ rằng: A chia hết cho 7
2) Tìm số tự nhiên n, biết 1+2+3+...+n=1275 .
Các bạn giúp mình câu này với mình cần gấp
1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)
\(=7\left(6^{2020}+6^{2022}\right)⋮7\)
Bài 1:
$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$
Ta có đpcm.
Bài 2:
$1+2+3+...+n=1275$
$\frac{n(n+1)}{2}=1275$
$n(n+1)=2.1275=2550$
$n(n+1)=50.51$
$\Rightarrow n=50$
Bài 1 : Cho B = 1+ 2 + + 22 + 23 + …+ 279
A) Chứng minh B và 280 là 2 số tự nhiên liên tiếp
B ) Chứng minh B chia hết cho 3
C) Chứng minh C không chia hết cho 7
Bài 2 :Cho tổng C = 1 + 2 + 22 + .......................... + 289
A ) So sánh C với 2 90
B)Chứng minh C chia hết cho 7
C) Chứng minh C không chia hết cho 15
Giúp mình nha ! Mình đang cần gấp ạ ! Cảm ơn nhiều vì đã giúp mình ạ .
1. Chứng tỏ A= 3^0+3^1+3^2+3^3+....+3^98 chia hết cho 13
2. Chứng tỏ B= 3^0+3^1+3^2+3^3+....+3^100 không chia hết cho 13
3. Tìm x, để D= (12.3+26.b+2022.c+x) chia hết cho 2
Ở bài 3 dấu . là nhân ạ! Còn ở bài 1,2 dấu ^ là dấu mũ!
Giúp mình vs ạ, mình cảm ơn!
Bài 1 :
\(A=3^0+3^1+3^2+3^3+...+3^{98}\)
\(A=\left(1+3+3^2\right)+.....+\left(3^{97}+3^{98}+3^{99}\right)\) ( Nhóm 3 số 1 nhé )
\(A=13+.....+3^{97}.13⋮13\left(\text{đ}pcm\right)\)
Bài 2 :
Theo ý a ta có :
\(A=13+.....+3^{97}.13+3^{99}+3^{100}\)
\(A=13+.....+3^{97}.13+3^{99}.4⋮̸13\)
Bài 3 :
Để D chia hết cho 2 thì x chia hết cho 2
1. \(A=3^0+3^1+3^2+...+3^{98}\)
\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{96}\left(1+3+3^2\right)\)
\(=13\left(1+3^3+...+3^{96}\right)\)chia hết cho \(13\).
2. \(B=3^0+3^1+3^2+3^3+...+3^{100}\)
\(=1+3+\left(3^2+3^3+3^4\right)+...+\left(3^{98}+3^{99}+3^{100}\right)\)
\(=4+3^2\left(1+3+3^2\right)+...+3^{98}\left(1+3+3^2\right)\)
\(=4+13\left(3^2+3^5+...+3^{98}\right)\)không chia hết cho \(13\).
3. \(D=\left(12.3+26.b+2022.c+x\right)\)chia hết cho \(2\)
\(\Leftrightarrow x⋮2\)(vì \(12.3⋮2,26b⋮2,2022c⋮2\))
giúp mình với mai đi học rùi bạn nào biết làm chỉ mình cách cụ thể nha ! giúp nha gấp lắm
Bài 1 : tìm N thuộc N , biết :
a) 1<2^n < 128
b) 9 , 3^n < 729
c) 1 <=3^2n <= 27 ^ 2
BÀi 2 : chứng minh rằng
a) 5^7 - 5^6 + 5^5 chia hết cho 21
b) 7^6 + 7^5 - 7^4 chia hết cho 77
Bài 3 : chứng minh rằng
a)5+ 5^2 + 5^3 + 5^4 .....+ 5^120 chia hết cho 156
b) 1 + 7 + 7^2 + 763 +....+ 7^98 chia hết cho 57
Bài 4 : chứng minh rằng
a) 1+2+ 2^2 + 2^3 + 2^4 +......+ 2 ^ 63 = 2 ^ 64-1
Chứng minh:
a). Biểu thức: A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7¹⁰⁰ chia hết cho 8
b) Biểu thức B = 2 + 2² + 2³ + … + 2²⁰⁰
chia hết cho 5.
(Giúp mình với ạ, mình cảm ơn)
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5
\(B=2+2^2+2^3+...+2^{200}\)
\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{199}+2^{200}\right)\)
\(B=1.\left(2+2^2\right)+2^2.\left(2^{ }+2^2\right)+...+2^{198}.\left(2+2^2\right)\)
\(B=1.5+2^2.5+...+2^{198}.5\)
⇒\(B⋮5\)
Vậy B chia hết cho 5 (đpcm)
\(B=5.\left(1+2^2+...+2^{198}\right)\)
Giải giúp mình
Bài 1: chứng tỏ B= 2+2*(mũ)2+2*3+...+2*60 chia hết cho 3 và 7
Bài 2: cho A=2+2*2+2*3+2*4+2*5+2*6+2*7+2*8
Chứng tỏ A chia hết cho 5
Bài 3: chứng tỏ abba+ab+ba chia hết cho 11
Bài 4: chứng minh A=4+4*2+4*3+4*4+4*5+4*6 chia hết cho 5
Bài 5: tìm các số tự nhiên a sao cho 2a+1 chia hết cho a-1