Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành An
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 4 2020 lúc 13:37

\(\sqrt[3]{\overline{xyz}}=x+y+z\)

\(\Leftrightarrow\overline{xyz}=\left(x+y+z\right)^3\)

Đặt \(m=x+y+z\Rightarrow m\equiv\overline{xyz}\left(mod9\right)\)

\(\Rightarrow\overline{xyz}-m⋮9\)

Đặt \(\overline{xyz}-m=9k\left(k\inℕ\right)\)

\(\Leftrightarrow m^3-m=9k\Leftrightarrow\left(m-1\right)m\left(m+1\right)=9k\)

\(\Rightarrow\left(m-1\right)m\left(m+1\right)⋮9\)

Nhận xét:trong 3 số tự nhiên liên tiếp tồn tại duy nhất 1 số chia hết cho 3 mà tích chúng chia hết cho 9 nên tồn tại duy nhất 1 số chia hết cho 9

Mặt khác \(100\le\overline{xyz}\le999\Rightarrow100\le m^3\le999\)

\(\Leftrightarrow4\le m\le9\Rightarrow3\le m-1\le8;5\le m+1\le10\)

Nếu \(m⋮9\Rightarrow m=9\Rightarrow\overline{xyz}=9^3=729\)

Thử lại ta thấy không thỏa mãn,loại

Nếu \(m-1⋮9\left(KTM\right)\)

Nếu \(m+1⋮9\Rightarrow m+1=9\Rightarrow m=8\Rightarrow\overline{xyz}=8^3=512\)

Thử lại ta thấy thỏa mãn

Vậy số đó là 512

Khách vãng lai đã xóa
Nguyễn Thảo Nguyên
Xem chi tiết
Nguyễn Thảo Nguyên
29 tháng 11 2016 lúc 20:01

Các bạn giúp mình đi

cái V x là căn đó nghen

huy nhật
29 tháng 11 2016 lúc 20:07

dùng bất đẳng thức Côsi nha bạn

Thắng Nguyễn
29 tháng 11 2016 lúc 20:31

Theo gt \(xyz=xy+yz+xz\) ta có:

\(\sqrt{x+yz}=\sqrt{\frac{x^2+xyz}{x}}=\sqrt{\frac{x^2+xy+yz+xz}{x}}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\)

Theo BĐT Cauchy-Schwarz có: \(\sqrt{\left(x+y\right)\left(x+z\right)}\ge x+\sqrt{yz}\) do đó:

\(\sqrt{x+yz}=\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x}}\ge\frac{x+\sqrt{yz}}{x}=\sqrt{x}+\sqrt{\frac{yz}{x}}\)

Tương tự cho 2 BĐT còn lại ta có:

\(\sqrt{y+xz}\ge\sqrt{y}+\sqrt{\frac{xz}{y}};\sqrt{z+xy}\ge\sqrt{z}+\sqrt{\frac{xy}{z}}\)

Cộng 3 vế của BĐT lại ta có:

\(\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy\ge}\sqrt{x}+\sqrt{\frac{yz}{x}}+\sqrt{y}+\sqrt{\frac{xz}{y}}+\sqrt{z}+\sqrt{\frac{xy}{z}}\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)

\(\Leftrightarrow\sqrt{x+yz}+\sqrt{y+xz}+\sqrt{z+xy}\ge\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}\)

???
Xem chi tiết
Bánh Mì
Xem chi tiết
dbrby
Xem chi tiết
Nguyễn Phạm Thanh Nga
5 tháng 4 2018 lúc 18:09

ĐKXĐ: x, y, z ∈ N*

ko mất tính tổng quát, giả sử x ≤ y ≤ z

⇒ x + y + z ≤ 3z

⇒ xy ≤ 3 mà x, y, z ∈ N* ⇒ xy ≥ 1

Với xy = 3 ⇒ x = 1; y = 3 ⇒ 4 + z = 3z ⇒ z = 2 (vô lí vì y ≤ z)

Với xy = 2 ⇒ x = 1; y = 2 ⇒ 3 + z = 2z ⇒ z = 3 (thỏa mãn)

Với xy = 1 ⇒ x = y = 1 ⇒ 2 + z = z (vô lí)

Vậy xyz ∈ {123; 132; 231; 213; 321; 312}

Sherry
Xem chi tiết
Công chúa Aiko
7 tháng 4 2017 lúc 12:32

a = 9 đó bạn

Sherry
7 tháng 4 2017 lúc 12:38

Cách làm?

Nguyễn Tuấn Minh
7 tháng 4 2017 lúc 12:42

Ta có

   xyzt

-  2yzt

______

       xz

=>x=0, vô lí

Bạn xem lại đề nhé

Dương Thu Thảo
Xem chi tiết
Tiểu Dật Ninh
26 tháng 9 2023 lúc 9:43

\(88.88=7744\)

Kamato Heiji
Xem chi tiết
Akai Haruma
19 tháng 5 2020 lúc 22:45

Bài 1:

$1+2+3+...+n=\overline{aaa}$

$\Leftrightarrow \frac{n(n+1)}{2}=a.111$

$\Leftrightarrow n(n+1)=a.222\vdots 37$ nên suy ra $n\vdots 37$ hoặc $n+1\vdots 37$

Nếu $n\vdots 37$. Đặt $n=37k$ với $k\in\mathbb{N}^*$

Khi đó: $37k(37k+1)=222a\Rightarrow k(37k+1)=6a$

$6a\leq 54$ do $a\leq 9; 37k+1\geq 38$ do $k\geq 1$

$\Rightarrow k=\frac{6a}{37k+1}< 2\Rightarrow k=1$

$\Rightarrow 6a=38$ (vô lý)

Nếu $n+1\vdots 37$. Đặt $n+1=37k$ với $k\in\mathbb{N}^*$

Khi đó: $(37k-1).37k=222a\Rightarrow k(37k-1)=6a$

$6a\leq 54$ do $a\leq 9$; $37k-1\geq 36$ do $k\geq 1$

$\Rightarrow k=\frac{6a}{37k-1}< 2\Rightarrow k=1$

$\Rightarrow n=36; a=6$

Akai Haruma
19 tháng 5 2020 lúc 22:49

Bài 2: $5z=7z$ hình như sai, bạn coi lại đề.

Bài 3:

\(\frac{\overline{ab}}{a+b}=\frac{\overline{bc}}{b+c}\Leftrightarrow \frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)

\(\Leftrightarrow \frac{9a+(a+b)}{a+b}=\frac{9b+(b+c)}{b+c}\Leftrightarrow \frac{9a}{a+b}+1=\frac{9b}{b+c}+1\)

\(\Leftrightarrow \frac{a}{a+b}=\frac{b}{b+c}\Rightarrow ab+ac=ab+b^2\)

\(\Leftrightarrow ac=b^2\Rightarrow \frac{a}{b}=\frac{b}{c}\) (đpcm)

Akai Haruma
20 tháng 5 2020 lúc 15:55

Bài 2 sau khi đã sửa đề thành $5x=7z$:

Ta có:
\(\frac{x}{y}=\frac{3}{2}\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{21}=\frac{y}{14}(1)\)

\(5x=7z\Leftrightarrow \frac{x}{7}=\frac{z}{5}\Leftrightarrow \frac{x}{21}=\frac{z}{15}(2)\)

Từ $(1);(2)\Rightarrow \frac{x}{21}=\frac{y}{14}=\frac{z}{15}$ và đặt bằng $k$

$\Rightarrow x=21k; y=14k; z=15k$

Khi đó:

$x-2y+z=32$

$\Leftrightarrow 21k-28k+15k=32\Leftrightarrow 8k=32\Rightarrow k=4$

$\Rightarrow x=21k=84; y=14k=56; z=15k=60$

Hồ Minh Phi
Xem chi tiết