cho A= 1^3+2^3+3^3...+10^ CMR A chia hết cho 11
và A chia hết cho 5
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
b)=3^1+(3^2+3^3+3^4)+(3^5+3^6+3^7)+....+(3^58+3^59+3^60)
=3^1+(3^2.1+3^2.3+3^2.9)+(3^5.1+3^5.3+3^5.9)+......+(3^58.1+3^58.3+3^58.9)
=3^1+3^2.(1+3+9)+3^5.(1+3+9)+.....+3^58.(1+3+9)
=3+3^2.13+3^5.13+.........+3^58.13
=3.13.(3^2+3^5+....+3^58)
vi tich tren co thua so 13 nen tich do chia het cho 13
=
bai1
a) A=(31+32)+(33+34)+...+(359+360)
=(3^1.1+3^1.3)+...+(3^59.1+3^59.2)
=3^1.(1+3)+...+3^59.(1+3)
=3^1.4+....+3^59.4
=4.(3^1+...+3^59)
vi tich tren co thua so 4 nen tich do chia het cho 4
Bài 2:(12a + 36b) = (12a + 12 x 3 x b) = 12( a + 3b)chia hết cho 12
bài 1: cho A=3 + 3^2 + 3^3 +......+3^60. Chứng minh rằng
a)A chia hết 4 b)A chia hết 13
bài 2: CMR: (12a + 36b) chia hết 12 với a,b thuộcN
bài 3:cho a,b,c thuộc N và (111a + 23b) chia hết 12
CMR: (9a + 13b) chia hết cho 12
bài 4: CMR
a) 5 + 5^2 + 5^3 chia hết cho 5
b) 2^9 + 2^10 + 2^11 + 2^12 chia hết cho 15
c) 10^11 + 8 chia hét cho 3
d) 3^20 + 3^19 - 3^18 chia hết 11
bài 5: cho A = 8n + 111....1( n chữ số 1)
CMR: A chia hết 9
ai làm được đủ hết thì làm giùm mình nhé còn không thì chỉ cần làm cho mình mỗi người 1 vài bài mà các bạn làm được là được rồi mình cảm ơn trước nhé làm nhanh hộ mình trước 6h nhé cố gắng giúp mình nhé ( gấp lắm đấy)
Giải
Bài 1:
a) Ta có: A=3+32+33+34+........+359+360=(3+32)+(33+34)+..........+(359+360)
=12+32x (3+32)+.......+358 x (3+32)=12+32 x 12+..........+358 x 12
=12 x (32 +...............+358)= 4 x 3 x (32 +...............+358)
Vì: m.n=m.n chia hết cho n hoặc m. Mà ở đây ta có 4 chia hết cho4.
=> Tổng này chia hết cho 4.
Bài 2:
Ta có: 12a chia hết cho 12; 36b chia hết cho 12.
=> tổng này chia hết cho 12.
Bài 4:a) Ta có: 5 + 5^2 + 5^3= 5 + (.........5) + (............5) = (............5)
Vậy tổng này có kết quả có chữ số tận cùng là 5. Mà những số có chữ số tận cùng là 5 thì chia hết cho 5.
=> Tổng này chia hết cho 5.
Bài 1) Cmr nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
Bài 2)Tìm a biết 20a20a20a chia hết cho 7
Bài 3) Cho abc + deg chia hết cho 37 . cmr abcdeg chia hết cho 37
Bài 4) Cho abc -deg chia hết cho 7 .cmr abcdeg chia hết cho 7
Bài 5) Tím STN a và b ,sao cho a chia hết cho b và b chia hết cho a
Làm đúng 3 bài mình cho 3 like
5)Cho A =13+23+33+....+103Cmr
a)A chia hết cho 11
b)Achia hết cho 5
a) \(A=\left(1^3+10^3\right)+\left(2^3+9^3\right)+...+\left(5^3+6^3\right)\)\(=\left(1+10\right).\left(1+10+10^2\right)+\left(2+9\right)\left(2^2+18+9^2\right)+...+\left(5+6\right)\left(5^2+30+6^2\right)\)
=\(11\left(1+10+10^2+...+5^2+30+6^2\right)\)\(\Rightarrow A⋮11\)
b) \(A=\left(1^3+9^3\right)+\left(2^3+8^3\right)+...+\left(4^3+6^3\right)+5^3+10^3\)
\(=\left(1+9\right)\left(1+9+9^2\right)+\left(2+8\right)\left(2^2+16+8^2\right)+.....+\left(4+6\right)\left(4^2+24+6^2\right)+5^3+10^{\text{3}}\)
\(=10\left(1+9+9^2+...+4^2+24+6^2\right)+5^3+10^3\)
Do \(10\left(1+9+9^2+...+4^2+24+6^2\right)⋮5\); \(5^3⋮5\) và \(10^3⋮5\)
\(\Rightarrow A⋮5\)
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
Bài 10: CMR: 3n^4-14n^3+21n^2-10n chia hết cho 24 (với mọi n thuộc N)
Bài 11: CMR: m^3+20m chia hết cho 48 với mọi m là số chẵn
Bài 12: a^5-5a^3+4a chia hết cho 120 với mọi a thuộc Z
Bài 13: m, n thuộc N sao cho 24m^4+1=n^2
CMR: mn chia hết cho 5
Bài 14: 17^19+19^17 chia hết cho 18
Bài 15: Cho A=1^3+2^3+3^3+...+100^3
B=1+2+3+...+100
CMR: A chia hết cho B
CMR:
a) 14^14 -1 chia hết cho 3
b) 2009^2009-1 chia hết cho 2008
c) A= 2+ 2^2+...+2^60 chia hết cho 21 và 15
d) B= 5 + 5^2+...+5^12 chia hết cho 30 và 31
e) C= 1+3+3^2+...+3^11 chia hết cho 52
1)Cho ( 3.a + b) chia hết cho 11.Với a;b thuộc N
CMR (4.a+ 5.b) chia hết cho 11
2)Cho (2.a + 5.b) chia hết cho 3
CMR (5.a + 2.b) chia hết cho 3
Các bạn thử giải xem nhé! Đây là 1 trong những dang bài toán dễ trong chương trinh lớp 6...
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
Mình sẽ giải phần a,phần b tương tự nhớ!
1)3a+b chia hết cho 11.
2 và 11 nguyên tố cùng nhau.
Vì vậy:
Nếu 2.(4a+5b) chia hết cho 11 thì 4a+5b chia hết cho 11.
2.(4a+5b)+3a+b.
11a+11b chia hết cho 11.
Mà 3a+b chia hết cho 11 suy ra 4a+5b chia hết cho 11.
Chúc bạn học tốt^^
CMR a)3^10+3^11+3^12 chia hết cho 13
b) 5^100+5^101+5^102 chia hết cho 31
a) \(3^{10}+3^{11}+3^{12}\)
⇔ \(3^{10}\left(1+3+3^2\right)\)
⇔ \(3^{10}.13\)
⇒ \(3^{10}.13\) chia hết cho 13
a) \(3^{10}+3^{11}+3^{12}=3^{10}\left(1+3+3^2\right)=3^{10}\cdot13⋮13\)
b) \(5^{100}+5^{101}+5^{102}=5^{100}\left(1+5+5^2\right)=5^{100}\cdot31⋮31\)