Chứng tỏ rằng số abcabc chia hết cho 11,7,13
a/ Chứng tỏ rằng số abcabc chia hết cho 7;11;13
b/ Chứng tỏ rằng số ab + ba chia hết cho 11
c/ Cho a,b € N biết 9.a + 7.b chia hết cho 11 . Chứng tỏ 2a+4b chia hết cho 11
a) Theo bài ra ta có:
abcabc = 1000abc + abc
= ( 1000 +1)abc
=1001abc.
Vì : 1001 chia hết cho 11 => abcabc chia hết cho 11.
1001 chia hết cho 7 => abcabc chia hết cho 7.
1001 chia hết cho 13 => abcabc chia hết cho 13.
=> Điều phải chứng minh.
b) Ta có:
ab+ba= 10a+b+10b+a=11a+11b=11(a+b) chia hết cho 11.
=> Đpcm.
c)Giả sử 9a+7b chia hết cho 11,ta có:
9(2a+4b)-2(9a+7b)= 18a+36b-(18a+14b)=18a+36b-18a-14b=36b-14b=(36-14)b=22b
Vì 22 chia hết cho 11 => 22b chia hết cho 11.
Mà 9a+7b chia hết cho 11 => 2(9a+7b) chia hết cho 11.
=> 9(2a+4b) chia hết cho 11.
Vì UWCLN(9;11)=1 => 2a+4b chia hết cho 11.
=> Đpcm.
k tớ nha <3
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 ( chẳng hạn số 328328 chia hết cho 11 )
Ta có:
\(\overline{abcabc}=1001\overline{abc}=11.99\overline{abc}\)
Vì \(11.99\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11
\(\Rightarrow\text{Điều phải chứng minh}\)
Vì x ⋮ 11 <=> (a0+a2+a4+...) - (a1+a3+a5+...) ⋮ 11
=> (c+a+b) - (b+c+a) = 0 ⋮ 11
Vậy dạng abcabc bao giờ cũng chia hết cho 11.
abcabc=a.100000+b.10000+c.1000+a.100+b.10+c.1
=a.100100+b.10010+c.1001
=a00.1001+b0.1001+c.1001
=abc.1001
=(abc.91).11 chia hết cho 11
=> abcabc chia hết cho 11
chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11(chẳng hạn: 328328 chia hết cho 11)
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11
Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11(chẳng hạn 328328 chia hết cho 11)
Theo bài ra ta có :
\(\overline{abcabc}\)
\(=\overline{abc}.1000+\overline{abc}.1\)
\(=\overline{abc}.\left(1000+1\right)\)
\(=\overline{abc}.1001\)
\(=\overline{abc}.11.91\)
\(=\left(\overline{abc}.91\right).11\)
\(\Rightarrow\overline{abcabc}⋮11\left(đpcm\right)\)
Ta có:
\(\overline{abcabc}=1001\overline{abc}=11.91\overline{abc}\)
Vì \(11.91\overline{abc}\) \(⋮\) 11 nên \(\overline{abcabc}\) \(⋮\) 11
\(\Rightarrow\) ĐPCM(điều phải chứng minh)
abcabc \(⋮\) 11 vì:
abcabc = abc . 1000 + abc
abcabc = abc . ( 1000 + 1 )
abcabc = abc . 1001
abcabc = abc . 11 . 91
Mà 11 \(⋮\) 11 \(\Rightarrow\) abc . 11 . 91 \(⋮\) 11
Vậy abcabc \(⋮\) 11 ( đpcm )
chứng tỏ rằng số co dạng abcabc bao giờ cũng chia hết cho 11
abcabc=abc x 1001=abc x 91 x 11\(⋮\)11
#Châu's ngốc
abcabc
=abc000+abc
=abc.100+abc
=abc.(100+1)
=abc.101
vì 101:101 =>abc.101 chia hết cho 101 =>abcabc luôn chia hết cho 101 với mọi abc
Ta có:abcabc=abc000+abc
=1000abc+abc
=1001.abc
Vì 1001 chia hết cho 11=>1001.abc chai hết cho 11
hay abcabc chia hết cho 11
Vậy abcabc chia hết cho .11
Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11 (chẳng hạn 328328 chia hết cho 11)
Có abcabc = abc . 1000 + abc
abcabc = abc . ( 1000 + 1 )
abcabc = abc . 1001
abcabc = abc . 11 . 91
Mà 11 \(⋮\)11 nên abc . 11 . 91 \(⋮\) 11
Vậy abcabc \(⋮\) 11 ( đpcm )
Chứng tỏ rằng số có dạng abcabc gạch đầu bao giờ cũng chia hết cho 11
Ta có: \(\overline{abcabc}=\overline{abc}.1000+\overline{abc}=\overline{abc}.\left(1000+1\right)\)
\(\Rightarrow\overline{abc}.1001=\overline{abc}.91.11\)
Vì \(11⋮11\Rightarrow\overline{abc}.91.11⋮11\)
Vậy số \(\overline{abcabc}\) lúc nào cũng chia hết cho 11
abcabc = 1000 . abc + abc = 1001 . abc = 11 . 91 . abc
Vậy abcabc chia hết cho 11.
ta có abcabc=100000a+10000b+1000b+100a+10b+c
=100100a+10010b+1001c
=1001(100a+10b+c)
=7.143.(100a+10b+c)
=> tích trên có thừa số 7
=> chia hết cho 7
=> abcabc chia hết cho 7
Chứng tỏ rằng số có dạng (abcabc) bao giờ cũng chia hết cho 11 ( chẳng hạn 328328 ⋮11)
chứng tỏ rằng abcabc chia hết cho 7,11,13
dễ
abcabc = abc . 1001
= abc . 7 . 11 . 13
ta thấy abcabc có chứa các thừa số 7 ,11,13
=> abcabc chia hết chp 7,11,13